Skip to main content

Aquamicrobium soli sp. nov., a bacterium isolated from a chlorobenzoate-contaminated soil

Abstract

An aerobic, Gram-stain negative, short rod-shaped, asporogenous, non-motile bacterium designated strain NK8T was isolated from a chlorobenzoate contaminated soil in China. Strain NK8T was observed to grow optimally at pH 7.0, 30 °C and in the absence of NaCl in LB medium. The G + C content of the total DNA of strain NK8T was found to be 65.5 mol%. The 16S rRNA gene sequence of strain NK8T showed high similarity to that of Aquamicrobium aerolatum Sa14T (97.3%), followed by Aquamicrobium lusatiense S1T (96.7%) and Mesorhizobium sangali SCAU7T (96.6%). The DNA–DNA relatedness between strain NK8T and A. aerolatum Sa14T was 35.5 ± 0.9%. The major fatty acids of strain NK8T were determined to be C19:0 cyclo ω8c (45.6%), C18:1 ω7c (33.4%) and C16:0 (8.4%). The respiratory quinone was found to be ubiquinone Q-10. The major polyamine was found to be spermidine. The polar lipid profile include the major compounds phosphatidylcholine and diphosphatidylglycerol, and moderate amounts of phosphatidylethanolamine, phosphatidylmonomethylethanolamine, aminolipid and phospholipid. Based on the differential biochemical and physiological characteristics, the geno-, chemo- and phenotypic characteristics, strain NK8T is proposed to represent a novel species of the genus Aquamicrobium, Aquamicrobium soli sp. nov. The type strain is NK8T (=KCTC 52165T=CCTCC AB2016045T).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Bambauer A, Rainey FA, Stackebrandt E, Winter J (1988) Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabo-lizing bacterium from activated sludge. Arch Microbiol 169:293–302

    Article  Google Scholar 

  2. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Beveridge TJ, Lawrence JR, Murray RGE (2007) Sampling and staining for light microscopy. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder RL (eds) Methods for general and molecular 208 microbiology, 3rd edn. American Society for Microbiology, Washington, pp 19–33

    Google Scholar 

  4. Busse HJ, Auling G (1988) Polyamine pattern as a chemotax-onomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8

    CAS  Article  Google Scholar 

  5. Busse HJ, Bunka S, Hensel A, Lubitz W (1997) Discrimination of members of the family Pasteurellaceae based on poly-amine patterns. Int J Syst Bacteriol 47:698–708

    CAS  Article  Google Scholar 

  6. Dadáková E, Křıžek M, Pelikánová T (2009) Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC). Food Chem 116:365–370

    Article  Google Scholar 

  7. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  Article  PubMed  Google Scholar 

  9. Fritsche K, Auling G, Andreesen JR, Lechner U (1999) Defluvibacter lusatiensis corrig, sp. nov. in validation of publication of new names and new combinations previously effectively published outside the IJSB, List no. 71. Int J Syst Bacteriol 49:1325–1326

    Article  Google Scholar 

  10. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048

    CAS  Article  PubMed  Google Scholar 

  11. Gomori G (1955) Preparation of buffers for use in enzyme studies. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic Press, New York, pp 138–146

    Google Scholar 

  12. He L, Li W, Huang Y, Wang L, Liu Z, Lanoot B, Vancanneyt M, Swings J (2005) Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 55:1939–1944

    CAS  Article  PubMed  Google Scholar 

  13. Hyun MJ, Kim JM, Jeon CO (2013) Aquamicrobium aestuarii sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 63:4012–4017

    Article  Google Scholar 

  14. Kämpfer P, Martin E, Lodders N, Jäckel U (2009) Transfer of Defluvibacter lusatiensis to the genus Aquamicrobium as Aquamicrobium lusatiense comb. nov. and description of Aquamicrobium aerolatum sp. nov. Int J Syst Evol Microbiol 59:2468–2470

    Article  PubMed  Google Scholar 

  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes thatrepresent uncultured species. Int J Syst Evol Microbiol 62:716–721

    CAS  Article  PubMed  Google Scholar 

  16. Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  17. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    CAS  Article  Google Scholar 

  18. Lane DL (1991) 16S/23S rRNA sequencing. In: Stackebrandt ER, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  19. Lechner U, Baumbach R, Becker D, Kitunen V, Auling G, Salkinoja-Salonen M (1995) Degradation of 4-chloro-2-methylphenol by an activated sludge isolate and its taxonomic description. Biodegradation 6:83–92

    CAS  Article  PubMed  Google Scholar 

  20. Lipski A, Kämpfer P (2012) Aquamicrobium ahrensii sp. nov. and Aquamicrobium segne sp. nov., isolated from experimental biofilters. Int J Syst Evol Microbiol 62:2511–2516

    CAS  Article  PubMed  Google Scholar 

  21. Liu XM, Chen K, Meng C, Zhang L, Zhu JC, Huang X, Li SP, Jiang JD (2014) Pseudoxanthobacter liyangensis sp. nov., isolated from dichlorodiphenyltrichloroethane-contaminated soil. Int J Syst Evol Microbiol 64:3390–3394

    Article  PubMed  Google Scholar 

  22. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    CAS  Article  Google Scholar 

  23. Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Tel-Zur N, Abbo S, Myslabodski D, Mizrahi Y (1999) Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Plant Mol Biol Rep 17:249–254

    CAS  Article  Google Scholar 

  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Tindall BJ (1990a) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    CAS  Article  Google Scholar 

  29. Tindall BJ (1990b) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    CAS  Article  Google Scholar 

  30. Tindall BJ, Sikorski J, Smibert RM, Kreig NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Marzluf JA, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology, 3rd edn. American Society of Microbiology, Washington, DC, pp 330–393

    Google Scholar 

  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  32. Wu ZG, Wang F, Gu CG, Zhang YP, Yang ZZ, Wu XX, Jiang X (2014) Aquamicrobium terrae sp. nov., isolated from the polluted soil near a chemical factory. Antonie Van Leeuwenhoek 105:1131–1137

    CAS  Article  PubMed  Google Scholar 

  33. Zhang J, Gu T, Zhou Y, He J, Zheng LQ, Li WJ, Huang X, Li SP (2012) Terrimonas rubra sp. nov., isolated from a polluted farmland soil and emended description of the genus Terrimonas. Int J Syst Evol Microbiol 62:2593–2597

    Article  PubMed  Google Scholar 

  34. Zhang L, Song M, Cao Q, Wu S, Zhao Y, Huang JW, Chen K, Li SP, Xia ZY, Jiang JD (2015) Camelimonas fluminis sp. nov., a cyhalothrin-degrading bacterium isolated from river water. Int J Syst Evol Microbiol 65:3109–3114

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (KYZ201422), the Outstanding Youth Foundation of Jiangsu Province (BK20130029) and the Scientific Foundation from Yunnan Tobacco Company (2014YN08).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jian-Dong Jiang.

Additional information

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain NK8T is KU877213.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 315 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, CF., Zhang, L., Huang, JW. et al. Aquamicrobium soli sp. nov., a bacterium isolated from a chlorobenzoate-contaminated soil. Antonie van Leeuwenhoek 110, 305–312 (2017). https://doi.org/10.1007/s10482-016-0800-8

Download citation

Keywords

  • Aquamicrobium soli sp. nov.
  • Gram-stain negative
  • Taxonomy
  • 16S rRNA gene