Skip to main content
Log in

Identification of a second PAD1 in Brettanomyces bruxellensis LAMAP2480

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Volatile phenols are aromatic compounds produced by some yeasts of the genus Brettanomyces as defense against the toxicity of hydroxycinnamic acids (p-coumaric acid, ferulic acid and caffeic acid). The origin of these compounds in winemaking involves the sequential action of two enzymes: coumarate decarboxylase and vinylphenol reductase. The first one converts hydroxycinnamic acids into hydroxystyrenes, which are then reduced to ethyl derivatives by vinylphenol reductase. Volatile phenols derived from p-coumaric acid (4-vinylphenol and 4-ethylphenol) have been described as the major contributors to self-defeating aromas associated with stable, gouache, wet mouse, etc., which generates large economic losses in the wine industry. The gene responsible for the production of 4-vinylphenol from p-coumaric acid has been identified as PAD1, which encodes a phenylacrylic acid decarboxylase. PAD1 has been described for many species, among them Candida albicans, Candida dubliniensis, Debaryomyces hansenii and Pichia anomala. In Brettanomyces bruxellensis LAMAP2480, a 666 bp reading frame (DbPAD) encodes a coumarate decarboxylase. Recent studies have reported the existence of a new reading frame belonging to DbPAD called DbPAD2 of 531 bp, which could encode a protein with similar enzymatic activity to PAD1. The present study confirmed that the transformation of Saccharomyces cerevisiae strain BY4722 with reading frame DbPAD2 under the control of the B. bruxellensis ACT1 promoter, encodes an enzyme with coumarate decarboxylase activity. This work has provided deeper insight into the origin of aroma defects in wine due to contamination by Brettanomyces spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187

    Article  CAS  PubMed  Google Scholar 

  • Bon E, Casaregola S, Blandin G, Llorente B, Neuvéglise C, Munsterkotter M, Gaillardin C (2003) Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Res 31:1121–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campolongo S, Siegumfeldt H, Aabo T, Cocolin L, Arneborg N (2014) The effects of extracellular pH and hydroxycinnamic acids influence the intracellular pH of Brettanomyces bruxellensis DSM 7001. LWT–Food Sci Technol 59:1088–1092

    CAS  Google Scholar 

  • Cavin JF, Dartois V, Diviès C (1998) Gene cloning, transcriptional analysis, purification, and characterization of phenolic acid decarboxylase from Bacillus subtilis. Appl Environ Microbiol 64:1466–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatonnet P, Dubourdieu D, Boidron J-N, Pons M (1992) The origin of ethylphenols in wines. J Sci Food Agric 60:165–178

    Article  CAS  Google Scholar 

  • Colot HV, Loros JJ, Dunlap JC (2005) Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency. Genetics 125:351–369

    Google Scholar 

  • Dalla Valle L, Vianello S, Belvedere P, Colombo L (2002) Rat cytochrome P450c17 gene transcription is initiated at different start sites in extraglandular and glandular tissues. J Steroid Biochem Mol Biol 82:377–384

    Article  CAS  PubMed  Google Scholar 

  • Daras G, Rigas S, Tsitsekian D, Zur H, Tuller T, Hatzopoulos P (2014) Alternative transcription initiation and the AUG context configuration control dual-organellar targeting and functional competence of Arabidopsis Lon1 protease. Mol Plant 7:989–1005

    Article  CAS  PubMed  Google Scholar 

  • Di Toro MR, Capozzi V, Beneduce L, Alexandré H, Tristezza M, Durante M, Tufariello M, Grieco F, Spano G (2015) Intraspecific biodiversity and “spoilage potential” of Brettanomyces bruxellensis in Apulian wines. LWT–Food Sci Technol 60:102–108

    Google Scholar 

  • Dias L, Pereira-da-Silva S, Tavares M, Malfeito-ferreira M, Loureiro V (2003) Factors affecting the production of 4-ethylphenol by the yeast Dekkera bruxellensis in enological conditions. Food Microbiol 20:377–384

    Article  CAS  Google Scholar 

  • Divie C (1997) Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization. Appl Environ Microbiol 63:1939–1944

    Google Scholar 

  • Garijo P, González-Arenzana L, López-Alfaro I, Garde-Cerdán T, López R, Santamaría P, Gutiérrez AR (2014) Analysis of grapes and the first stages of the vinification process in wine contamination with Brettanomyces bruxellensis. Eur Food Res Technol 240:525–532

    Article  Google Scholar 

  • Godoy L, Garcia V, Peña R, Martínez C, Ganga MA (2014) Identification of the Dekkera bruxellensis phenolic acid decarboxylase (PAD) gene responsible for wine spoilage. Food Control 45:81–86

    Article  CAS  Google Scholar 

  • Harris V, Ford CM, Jiranek V, Grbin PR (2009) Survey of enzyme activity responsible for phenolic off-flavour production by Dekkera and Brettanomyces yeast. Appl Microbiol Biotechnol 81:1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217:109–119

    Article  PubMed  Google Scholar 

  • Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Huang HK, Chen LF, Tokashiki M, Ozawa T, Taira T, Ito S (2012) An endogenous factor enhances ferulic acid decarboxylation catalyzed by phenolic acid decarboxylase from Candida guilliermondii. AMB Express 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Janska H, Piechota J, Kwasniak M (2010) ATP-dependent proteases in biogenesis and maintenance of plant mitochondria. Biochim et Biophys Acta–Bioenerg 1797:1071–1075

    Article  CAS  Google Scholar 

  • Mukai N, Masaki K, Fujii T, Kawamurai M, Iefuji H (2010) PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J Biosci Bioeng 109:564–569

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Gupta R, Davuluri RV (2012) Alternative transcription and alternative splicing in cancer. Pharmacol Ther 136:283–294

    Article  CAS  PubMed  Google Scholar 

  • Puupponen-Pimiä R, Nohynek L, Meier C, Kahkonen M, Heinonen M, Hopia A, Oksman-Caldentey KM (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90:494–507

    Article  PubMed  Google Scholar 

  • Rigas S, Daras G, Tsitsekian D, Alatzas A, Hatzopoulos P (2014) Evolution and significance of the Lon gene family in Arabidopsis organelle biogenesis and energy metabolism. Front Plant Sci 5:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross KA, Beta T, Arntfield SD (2009) A comparative study on the phenolic acids identified and quantified in dry beans using HPLC as affected by different extraction and hydrolysis methods. Food Chem 113:336–344

    Article  CAS  Google Scholar 

  • Sánchez-Torres P, González-Candelas L, Ramón D (1998) Heterologous expression of a Candida molischiana anthocyanin-β-glucosidase in a wine yeast strain. J Agric Food Chem 46:354–360

    Article  PubMed  Google Scholar 

  • Shin SY, Han NS, Park YC, Kim MD, Seo JH (2011) Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate: coenzyme A ligase and stilbene synthase genes. Enzym Microb Technol 48:48–53

    Article  CAS  Google Scholar 

  • Sinvany-Villalobo G, Davydov O, Ben-Ari G, Zaltsman A, Raskind A, Adam Z (2004) Expression in multigene families. Analysis of chloroplast and mitochondrial proteases. Plant Physiol 135:1336–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smit A, Cordero Otero RR, Lambrechts MG, Pretorius IS, Van Rensburg P (2003) Enhancing volatile phenol concentrations in wine by expressing various phenolic acid decarboxylase genes in Saccharomyces cerevisiae. J Agric Food Chem 51:4909–4915

    Article  CAS  PubMed  Google Scholar 

  • Stratford M, Plumridge A, Archer DB (2007) Decarboxylation of sorbic acid by spoilage yeasts is associated with the PAD1 gene. Appl Environ Microbiol 73:6534–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suárez R, Suárez-Lepe JA, Morata A, Calderón F (2007) The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: a review. Food Chem 102:10–21

    Article  Google Scholar 

  • Thatcher LF, Carrie C, Andersson CR, Sivasithamparam K, Whelan J, Sing KB (2007) Differential gene expression and subcellular targeting of Arabidopsis glutathione S-transferase F8 is achieved through alternative transcription start sites. J Biol Chem 282:28915–28928

    Article  CAS  PubMed  Google Scholar 

  • Thornton JA (2016) Splicing by overlap extension pcr to obtain hybrid DNA products. In: Bose LJ (ed) The genetic manipulation of Staphylococci: methods and protocols. Springer, New York, pp 43–49

    Google Scholar 

  • Vaquero MJR, Alberto MR, de Nadra MCM (2007) Antibacterial effect of phenolic compounds from different wines. Food Control 18:93–101

    Article  Google Scholar 

  • Woolfit M, Rozpȩdowska E, Piškur J, Wolfe KH (2007) Genome survey sequencing of the wine spoilage yeast Dekkera (Brettanomyces) bruxellensis. Eukaryot Cell 6:721–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB) 120043, CONICYT Postdoctorado/FONDECYT 3140083 and Faculty of Technology Scholarship awarded by the Universidad de Santiago de Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma Angélica Ganga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, C., Godoy, L. & Ganga, M.A. Identification of a second PAD1 in Brettanomyces bruxellensis LAMAP2480. Antonie van Leeuwenhoek 110, 291–296 (2017). https://doi.org/10.1007/s10482-016-0793-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0793-3

Keywords

Navigation