Skip to main content
Log in

Light effects on the multicellular magnetotactic prokaryote ‘Candidatus Magnetoglobus multicellularis’ are cancelled by radiofrequency fields: the involvement of radical pair mechanisms

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Candidatus Magnetoglobus multicellularis’ is the most studied multicellular magnetotactic prokaryote. It presents a light-dependent photokinesis: green light decreases the translation velocity whereas red light increases it, in comparison to blue and white light. The present article shows that radio-frequency electromagnetic fields cancel the light effect on photokinesis. The frequency to cancel the light effect corresponds to the Zeeman resonance frequency (DC magnetic field of 4 Oe and radio-frequency of 11.5 MHz), indicating the involvement of a radical pair mechanism. An analysis of the orientation angle relative to the magnetic field direction shows that radio-frequency electromagnetic fields disturb the swimming orientation when the microorganisms are illuminated with red light. The analysis also shows that at low magnetic fields (1.6 Oe) the swimming orientation angles are well scattered around the magnetic field direction, showing that magnetotaxis is not efficiently in the swimming orientation to the geomagnetic field. The results do not support cryptochrome as being the responsible chromophore for the radical pair mechanism and perhaps two different chromophores are necessary to explain the radio-frequency effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta-Avalos D, Azevedo LMS, Andrade TS, Lins de Barros H (2012) Magnetic configuration model for the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis. Eur Biophys J 41:405–413

    Article  PubMed  Google Scholar 

  • Almeida FP, Viana NB, Lins U, Farina M, Keim CN (2013) Swimming behavior of the multicelular magnetotactic prokaryote ‘Candidatus Magnetoglobus multicellularis’ under applied magnetic fields and ultraviolet light. Antonie Van Leeuwenhoek 103:845–857

    Article  PubMed  Google Scholar 

  • Azevedo LV, Acosta-Avalos D (2015) Photokinesis is magnetic field dependent in the multicelular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis. Antonie Van Leeuwenhoek 108:579–585

    Article  PubMed  Google Scholar 

  • Azevedo LV, Lins de Barros H, Keim CN, Acosta-Avalos D (2013) Effect of light wavelength on motility and magnetic sensibility of the magnetotactic multicelular prokaryote ‘Candidatus Magnetoglobus multicellularis’. Antonie Van Leeuwenhoek 104:405–412

    Article  PubMed  Google Scholar 

  • Canfield J, Belford R, Debrunner P, Schulten K (1994) A perturbation theory treatment of oscillating magnetic fields in the radical pair mechanism. Chem Phys 182:1–18

    Article  CAS  Google Scholar 

  • Dickey TD, Kattawar GW, Voss KJ (2011) Shedding new light on light in the ocean. Phys Today 64:44–50

    Article  Google Scholar 

  • Frankel R (1984) Magnetic guidance of organisms. Ann Rev Biophys Bioeng 13:85–103

    Article  CAS  Google Scholar 

  • Gonzalez LM, Ruder WC, Mitchell AP, Messner WC, LeDuc PR (2015) Sudden motility reversal indicates sensing of magnetic field gradients in Magnetospirillum magneticum AMB-1 strain. ISME J 9:1399–1409

    Article  CAS  PubMed  Google Scholar 

  • Greenberg M, Canter K, Mahler I, Tornheim A (2005) Observation of magnetoreceptive behavior in a multicellular magnetotactic prokaryote in higher than geomagnetic fields. Biophys J 88:1496–1499

    Article  CAS  PubMed  Google Scholar 

  • Keim CN, Martins JL, Lins de Barros H, Lins U, Farina M (2006) Structure, behavior, ecology and diversity of multicellular magnetotactic prokaryotes. In: Schuler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Berlin, pp 103–132

    Google Scholar 

  • Liedvogel M, Mouritsen H (2010) Cryptochromes—a potential magnetoreceptor: what do we know and what do we want to know? J R Soc Interface 7:S147–S162

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Ahmad M, Gordon D, Cashmore AR (1995) Expression of an arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proc Natl Acad Sci USA 92:8423–8427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lins U, Freitas F, Keim CN, Lins de Barros H, Esquivel DMS, Farina M (2003) Simple homemade apparatus for harvesting uncultured magnetotactic microorganisms. Braz J Microbiol 34:111–116

    Article  Google Scholar 

  • Phillips JB, Borland SC (1992) Behavioral evidence for use of light-dependent magnetoreception mechanism by a vertebrate. Nature 359:142–144

    Article  Google Scholar 

  • Rasband WS (1997–2016) ImageJ, USA. National Institutes of Health, Bethesda, Maryland.http://imagej.nih.gov/ij/

  • Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical pair mechanism for avian magnetic compass. Nature 429:177–180

    Article  CAS  PubMed  Google Scholar 

  • Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W (2010) Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J R Soc Interface 7:S135–S146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers CT (2009) Magnetic field effects in chemical systems. Pure Appl Chem 81:19–43

    Article  CAS  Google Scholar 

  • Shapiro OH, Hatzenpichler R, Buckley DH, Zinder SH, Orphan VJ (2011) Multicellular photo-magnetotactic bacteria. Environ Microbiol Rep 3:233–238

    Article  PubMed  Google Scholar 

  • Wiltschko R, Wiltschko W (1998) Pigeon homing: effect of various wavelengths of light during displacement. Naturwissenschaften 85:164–167

    Article  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R, Munro U (2000) Light-dependent magnetoreception in birds: the effect of intensity of 565 nm green light. Naturwissenschaften 87:366–369

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Ge X, Li N, Wu LF, Luo C, Ouyang Q, Tu Y, Chen G (2014) Angle sensing in magnetotaxis of M. magneticum AMB-1. Integr Biol 6:706–713

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Henrique Lins de Barros for fruitful discussions, to both anonymous reviewers for their comments and suggestions, and to Dr. Donald Ellis of Northwestern University for reading and correcting the English grammar. RDM acknowledges financial support by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico–CNPq and DAA acknowledges financial support by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro– FAPERJ and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Acosta-Avalos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3020 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo, R.D., Acosta-Avalos, D. Light effects on the multicellular magnetotactic prokaryote ‘Candidatus Magnetoglobus multicellularis’ are cancelled by radiofrequency fields: the involvement of radical pair mechanisms. Antonie van Leeuwenhoek 110, 177–186 (2017). https://doi.org/10.1007/s10482-016-0788-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0788-0

Keywords

Navigation