Skip to main content

Advertisement

Log in

Betulin inhibits cariogenic properties of Streptococcus mutans by targeting vicRK and gtf genes

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Streptococcus mutans, a multivirulent pathogen is considered the primary etiological agent in dental caries. Development of antibiotic resistance in the pathogen has created a need for novel antagonistic agents which can control the virulence of the organism and reduce resistance development. The present study demonstrates the in vitro anti-virulence potential of betulin (lup-20(29)-ene-3β,28-diol), an abundantly available plant triterpenoid against S. mutans UA159. Betulin exhibited significant dose dependent antibiofilm activity without affecting bacterial viability. At 240 µg/ml (biofilm inhibitory concentration), betulin inhibited biofilm formation and adherence to smooth glass surfaces by 93 and 71 % respectively. It reduced water insoluble glucan synthesis by 89 %, in conjunction with down regulation of gtfBC genes. Microscopic analysis confirmed the disruption in biofilm architecture and decreased exopolysaccharide production. Acidogenicity and aciduricity, key virulence factors responsible for carious lesions, were also notably affected. The induced auto-aggregation of cells upon treatment could be due to the down regulation of vicK. Results of gene expression analysis demonstrated significant down-regulation of virulence genes upon betulin treatment. Furthermore, the nontoxic effect of betulin on peripheral blood mononuclear cells even after 72 h treatment makes it a strong candidate for assessing its suitability to be used as a therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdu H, Ahmad FB, Ismail IS (2012) Betulinic acid glycosides: a review. Orient J Chem 28:1123–1133

    Article  CAS  Google Scholar 

  • Ajdic D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jis H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. PNAS 99:14434–14439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alakurtti S, Makela T, Koskimies S, Yli-Kauhaluoma J (2006) Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci 29:1–13

    Article  CAS  PubMed  Google Scholar 

  • Baehni PC, Takeuchi Y (2003) Anti-plaque agents in the prevention of biofilm-associated oral diseases. Oral Dis 9:23–29

    Article  PubMed  Google Scholar 

  • Ban SH, Kim JE, Pandit S, Jeon JG (2012) Influences of Dryopteris crassirhizoma extract on the viability, growth and virulence properties of Streptococcus mutans. Molecules 17:9231–9244

    Article  CAS  PubMed  Google Scholar 

  • Banas JA, Lynch DJ, Michalek SM, Drake D, Qian F, Banas JA (2013) Cariogenicity of Streptococcus mutans glucan-binding protein deletion mutants. Oral Health Dent Manag 12:191–199

    PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt T, Jensen PO, Rasmussen TB, Christophersen L, Calcum H, Hentzer M, Hougen HP, Rygaard J, Moser C, Eberl L, Hoiby N, Givskov M (2005) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880

    Article  CAS  PubMed  Google Scholar 

  • Bowen WH, Koo H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45:69–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brackman G, Defoirdt T, Miyamoto C, Bossier P, Calenbergh SV, Nelis H, Coenye T (2008) Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol 8:149–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    Article  CAS  PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte S, Gregoire S, Singh AP, Vorsa N, Schaich K, Bowen WH, Koo H (2006) Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiol Lett 257:50–56

    Article  CAS  PubMed  Google Scholar 

  • Gowrishankar S, Mosioma DN, Pandian SK (2012) Coral associated bacteria as a promising anti-biofilm agent against methicillin resistant and susceptible Staphylococcus aureus biofilms. Evid Based Compl Alt Med. doi:10.1155/2012/862374

    Google Scholar 

  • Gregoire S, Singh AP, Vorsa N, Koo H (2007) Influence of cranberry phenolics on glucan synthesis by glucosyltransferases and Streptococcus mutans acidogenicity. J Appl Microbiol 103:1960–1968

    Article  CAS  PubMed  Google Scholar 

  • Hamada S, Torii M, Kotani S, Tsuchitani Y (1981) Adherence of Streptococcus sanguis clinical isolates to smooth surfaces and interactions of the isolates with Streptococcus mutans glucosyltransferase. Infect Immun 32:364–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan S, Danishuddin M, Adil M, Singh K, Verma PK, Khan AU (2012) Efficacy of E. officinalis on the cariogenic properties of Streptococcus mutans: a novel and alternative approach to suppress quorum-sensing mechanism. PLoS One 7:e40319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan S, Singh K, Danisuddin M, Verma PK, Khan AU (2014) Inhibition of major virulence pathways of Streptococcus mutans by quercitrin and deoxynojirimycin: a synergistic approach of infection control. PLoS One 9:e91736

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam B, Khan SN, Haque I, Alam M, Mushfiq M, Khan AU (2008) Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba. J Antimicrob Chemther 62:751–757

    Article  CAS  Google Scholar 

  • Jeon JG, Rosalen PL, Falsetta ML, Koo H (2011) Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res 45:243–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones CG (1997) Chlorhexidine: is it still the gold standard? Periodontol 2000(15):55–62

    Article  Google Scholar 

  • Koo H, Pearson SK, Scott-Anne K, Abranches J, Cury JA, Rosalen PL, Park YK, Marquis RE, Bowen WH (2002) Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats. Oral Microbiol Immun 17:337–343

    Article  CAS  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Ch 45:999–1007

    Article  CAS  Google Scholar 

  • Li Y, Burne RA (2001) Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate. Microbiology 147:2841–2848

    Article  CAS  PubMed  Google Scholar 

  • Matos-Graner RO, Smith DJ, King WF, Mayer MPA (2000) Water insoluble glucan synthesis by mutans streptococcal strains correlates with caries incidence in 12- to 30-month-old children. J Dent Res 79:1371–1377

    Article  Google Scholar 

  • Matsumoto M, Minami T, Sasaki H, Sobue S, Hamada S, Ooshima T (1999) Inhibitory effects of oolong tea extract on caries–inducing properties of mutans streptococci. Caries Res 33:441–445

    Article  CAS  PubMed  Google Scholar 

  • Mattos-Graner RO, Klein MI, Smith DJ (2014) Lessons learned from clinical studies: roles of mutans streptococci in the pathogenesis of dental caries. Curr Oral Health Rep 1:70–78

    Article  Google Scholar 

  • Morse DP, Bass BL (1999) Long RNA hairpins that contain inosine are present in Caenorhabditis elegans poly(A) + RNA. PNAS 96:6048–6053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murugan K, Sekar K, Sangeetha S, Ranjitha S, Sohaibani SA (2013) Antibiofilm and quorum sensing inhibitory activity of Achyranthes aspera on cariogenic Streptococcus mutans: an in vitro and in silico study. Pharm Biol 51:728–736

    Article  CAS  PubMed  Google Scholar 

  • Nithya C, Aravindraja C, Pandian SK (2010) Bacillus pumilus of Palk Bay origin inhibits quorum-sensing-mediated virulence factors in Gram-negative bacteria. Res Microbiol 161:293–304

    Article  CAS  PubMed  Google Scholar 

  • Packiavathy IASV, Agilandeswari P, Babu RR, Pandian SK, Ravi AV (2011) Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch Med Res 42:658–668

    Article  Google Scholar 

  • Packiavathy IASV, Agilandeswari P, Musthafa KS, Pandian SK, Ravi AV (2012) Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int 45:85–92

    Article  CAS  Google Scholar 

  • Quivey RG Jr, Kuhnert WL, Hahn K (2000) Adaptation of oral streptococci to low pH. Adv Microb Physiol 42:239–274

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg LE, Carbone AL, Romling U, Uhrich KE, Chikindas ML (2008) Salicylic acid-based poly (anhydride esters) for control of biofilm formation in Salmonella enterica serovar Typhimurium. Lett Appl Microbiol 46:593–599

    Article  CAS  PubMed  Google Scholar 

  • Senadheera D, Cvitkovitch DG (2008) Quorum sensing and biofilm formation by Streptococcus mutans. Adv Exp Med Biol 631:178–188

    Article  CAS  PubMed  Google Scholar 

  • Senadheera MD, Guggenheim B, Spatafora GA, Huang YCC, Choi H, Hung DCI, Treglown JS, Goodman SD, Ellen RP, Cvitkovitch DG (2005) A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187:4064–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senadheera D, Krastel K, Mair R, Persadmehr A, Abranches J, Burne RA, Cvitkovitch DG (2009) Inactivation of VicK affects acid production and acid survival of Streptococcus mutans. J Bacteriol 191:6415–6424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorroche FG, Spesia MB, Zorreguieta A, Giordano W (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 78:4092–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun F, Qu F, Ling Y, Mao P, Xia P, Chen H, Zhou D (2013) Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies. Future Microbiol 8:877–886

    Article  CAS  PubMed  Google Scholar 

  • Syad AN, Kasi PD (2014) Assessment of mutagenic effect of G. acerosa and S. wightii in S. typhimurium (TA 98, TA 100, and TA 1538 strains) and evaluation of their cytotoxic and genotoxic effect in human mononuclear cells: a non-clinical study. Biomed Res. doi:10.1155/2012/497242

    Google Scholar 

  • Tolstikov GA, Flekhter OB, Shultz EE, Baltina LA, Tolstikov AG (2005) Betulin and its derivatives. chemistry and biological activity. Khim Interes Ust Razv 13:1–30

    CAS  Google Scholar 

  • Tremblay YD, Lo H, Li YH, Halperin SA, Lee SF (2009) Expression of the Streptococcus mutans essential two-component regulatory system VicRK is pH and growth-phase dependent and controlled by the LiaFSR three-component regulatory system. Microbiology 155:2856–2865

    Article  CAS  PubMed  Google Scholar 

  • Wexler DL, Hudson MC, Burne RA (1993) Streptococcus mutans fructosyltransferase (ftf) and glucosyltransferase (gtfBC) operon fusion strains in continuous culture. Infect Immun 61:1259–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita Y, Bowen WH, Burne RA, Kuramitsu HK (1993) Role of the Streptococcus mutans gtf genes in caries induction in the specific pathogen- free rat model. Infect Immun 61:3811–3817

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge Dr. K. Padima Devi and Mr. T. Rajavel of the Department of Biotechnology, Alagappa University for their help in performing cytotoxicity assay. The authors thank the Department of Biotechnology, Government of India for providing Bioinformatics Infrastructure Facility (Grant No. BT/BI/25/012/2012 (BIF)). The instrumentation facility provided by Department of Science and Technology, Government of India through PURSE [Grant No.SR/S9Z-23/2010/42(G)] & FIST (Grant No.SR-FST/LSI-087/2008) and University Grants Commission, New Delhi through SAP-DRS1 [Grant No.F.3-28/2011(SAP-II)] is gratefully acknowledged. Financial support provided to Dharmaprakash Viszwapriya in the form of Senior Research Fellowship (File. No. 09/688(0017)/2011-EMR-I) by Council of Scientific and Industrial Research (CSIR), New Delhi is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunmugiah Karutha Pandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viszwapriya, D., Subramenium, G.A., Radhika, S. et al. Betulin inhibits cariogenic properties of Streptococcus mutans by targeting vicRK and gtf genes. Antonie van Leeuwenhoek 110, 153–165 (2017). https://doi.org/10.1007/s10482-016-0785-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0785-3

Keywords

Navigation