Skip to main content
Log in

Citricoccus lacusdiani sp. nov., an actinobacterium promoting Microcystis growth with limited soluble phosphorus

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel actinobacterium, designated strain JXJ CY 21T, was isolated from the culture mass of Microcystis sp. FACHB-905 collected from Lake Dianchi, South-west China. Polyphasic taxonomic study revealed that the isolate should be a member of the genus Citricoccus. Comparison of the 16S rRNA gene sequence of strain JXJ CY 21T with the available sequences in the GenBank database showed that the strain is closely related to Citricoccus zhacaiensis FS24T (97.8 % similarity), Citricoccus parietis 02-Je-010T (97.7 %), Citricoccus terreus V3M1T (97.6 %), Citricoccus nitrophenolicus PNP1T (97.2 %), Citricoccus alkalitolerans YIM 70010T (97.2 %) and Citricoccus muralis 4-0T (97.0 %). The DNA–DNA hybridization values between strain JXJ CY 21T and the related type strains C. zhacaiensis FS24T and C. parietis 02-Je-010T were 16.0 ± 2.6 and 5.4 ± 1.7 %, respectively. The peptidoglycan in the cell wall was A4α type containing lysine–glutamic acid–glycine. The major respiratory menaquinone was found to be MK-8 (H2) (98.5 %), while the major cellular fatty acids (>10 %) were anteiso-C15:0, iso-C16:0, iso-C15:0 and iso-C14:0. The polar lipids detected were diphosphatidylglycerol, phosphatidylinositol, phosphatidylglycerol, an unidentified phospholipid and an unidentified glycolipid. The DNA G + C content was determined to be 62.7 mol%. Strain JXJ CY 21T can solubilize both insoluble inorganic and organic phosphates up to 24.7 and 1.7 mg/l respectively. This property of the novel actinobacterium acts as a modulator for enhancement of growth of Microcystis sp. FACHB-905 in the lake ecosystem where the amount of soluble phosphate is limited. On the basis of the above taxonomic data, strain JXJ CY 21T represents a novel species of the genus Citricoccus, for which the name Citricoccus lacusdiani sp. nov. is proposed. The type strain is JXJ CY 21T (=KCTC 29653T = DSM 29160T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altenburger P, Kämpfer P, Schumann P, Steiner R, Lubitz W, Busse HJ (2002) Citricoccus muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 52:2095–2100

    CAS  PubMed  Google Scholar 

  • Casamatta D, Wickstrom C (2000) Sensitivity of two distinct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa. Microb Ecol 41:64–73

    Article  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Ann Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  • Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2, 4-diaminobutyric acid. Appl Bacteriol 48:459–470

    Article  CAS  Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Antoun H, Bashan Y (2008) Involvement of indole-3-acetic-acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol 44:938–947

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Li JH, Guan ZL, Hu BY, Zhao L, Li PF (2012) Effect of attached bacteria of carbonic anhydrase on the growth of Microcystis aeruginosa. J Lake Sci 24:429–435

    Article  CAS  Google Scholar 

  • Dziallas C, Grossart HP (2011) Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ Microbiol 13:1632–1641

    Article  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Goodfellow M (1971) Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 69:33–80

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T, Takizaea M, Tanida S (1983) A rapid analysis for chemical grouping aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

    Article  CAS  Google Scholar 

  • Jürgens K, Güde H (1994) The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser 112:169–188

    Article  Google Scholar 

  • Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704

    Article  CAS  PubMed  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2387

    Article  CAS  Google Scholar 

  • Li WJ, Chen HH, Zhang YQ, Kim CJ, Park GJ, Lee JC, Xu LH, Jiang CL (2005) Citricoccus alkalitolerans sp. nov., a novel actinobacterium isolated from a desert soil in Egypt. Int J Syst Evol Microbiol 55:87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu YM, Chen W, Li DH, Shen YW, Liu YD, Song LR (2006) Analysis of paralytic shellfish toxins in Aphanizomenon DC-1 from Lake Dianchi, China. Environ Toxicol 21:289–295

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Saravanan VS, Santhanakrishnan P (2010) Microbacterium azadirachtae sp. nov., a plantgrowth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. Int J Syst Evol Micr 60:1687–1692

    Article  CAS  Google Scholar 

  • Matsui T, Semba H, Hanada S (2012) Citricoccus yambaruensis sp. nov., a racemic phenylsuccinate stereospecifically assimilating actinomycete isolated from soil in Okinawa. J Gen Appl Microbiol 58:373–378

    Article  CAS  PubMed  Google Scholar 

  • Meng FX, Yang XC, Yu PS, Pan JM, Wang CS, Xu XW, Wu M (2010) Citricoccus zhacaiensis sp. nov., isolated from a bioreactor for saline wastewater treatment. Int J Syst Evol Microbiol 60:495–499

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Ministry of Agriculture of the People’s Republic of China (NY/T 1847—2010). General technical requirements for production strain quality of microbial fertilizer

  • Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95

    Article  CAS  Google Scholar 

  • Nielsen MB, Kjeldsen KU, Ingvorsen K (2011) Description of Citricoccus nitrophenolicus sp. nov., a para-nitrophenol degrading actinobacterium isolated from a wastewater treatment plant and emended description of the genus Citricoccus Altenburger et al 2002. Antonie Van Leeuwenhoek 99(3):489–499

    Article  PubMed  Google Scholar 

  • Niu Y, Shen H, Chen J, Xie P, Yang X, Tao M, Ma ZM, Qi M (2011) Phytoplankton community succession shaping bacterioplankton community composition in Lake Taihu. Water Res 45:4169–4182

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Zhang MM, Chen H, Zou H, Yan H (2006) Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially soluble clays and minerals. Environ Pollut 141:195–200

    Article  CAS  PubMed  Google Scholar 

  • Parveen B, Ravet V, Djediat C, Mary I, Quiblier C, Debroas D, Humbert JF (2013) Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environ Microbiol Rep 5:716–724

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (2001) Identification of bacteria by gas chromatography of cellular fatty acids. http://www.microbialid.com/PDF/TechNote_101.pdf

  • Schäfer J, Martin K, Kämpfer P (2010) Citricoccus parietis sp. nov., isolated from a mould-colonized wall and emended description of Citricoccus alkalitolerans Li et al 2005. Int J Syst Evol Microbiol 60(2):271–274

    Article  PubMed  Google Scholar 

  • Shi LM, Cai YF, Yang HL, Xing P, Li PF, Kong LD, Kong FX (2009) Phylogenetic diversity and specificity of bacteria associated with Microcystis aeruginosa and other cyanobacteria. J Environ Sci 21:1581–1590

    Article  Google Scholar 

  • Shi LM, Cai YF, Kong FX, Yu Y (2012) Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu. Env Microbiol Rep 4:669–678

    CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ (2009) Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59:2025–2032

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu H, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family Oxalobacteraceae isolated from China. Int J Syst Evol Microbiol 55:1149–1153

    Article  CAS  PubMed  Google Scholar 

  • Yang LY, Xiao L (2010) Outbrust, jeopardize and control of cyanobacterial bloom in lakes. Science, Beijing, p 212

    Google Scholar 

  • Zhang BH, Chen W, Li HQ, Hozzein WN, Yang Y, Hu WY, Abusaud O, Gao R, Li WJ (2015) A cyanobacteria-lytic compound produced by Streptomyces jiujiangensis JXJ 0074T. Appl Microbiol Biotechnol 99:7673–7683

    Article  CAS  PubMed  Google Scholar 

  • Zhao GY, Du JJ, Jia Y, Lv YN, Han GM, Tian XJ (2012) The importance of bacteria in promoting algal growth in eutrophic lakes with limited soluble phosphorus. Ecol Eng 42:107–111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Yu-Guang Zhou (CGMCC, China) and Dr. Rüediger Pukall (DSMZ, Germany) for kindly providing the reference type strains. This research was supported by Natural Science Foundation of China (No. 31060010) and Environmental Conservation Department of Jiangxi Province of China (No. JXHBKJ2013-14) and Program of Jiujiang University (No. 201511). W-J Li was also supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, BH., Salam, N., Cheng, J. et al. Citricoccus lacusdiani sp. nov., an actinobacterium promoting Microcystis growth with limited soluble phosphorus. Antonie van Leeuwenhoek 109, 1457–1465 (2016). https://doi.org/10.1007/s10482-016-0745-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0745-y

Keywords

Navigation