Antonie van Leeuwenhoek

, Volume 109, Issue 10, pp 1307–1322 | Cite as

Actinobacteria possessing antimicrobial and antioxidant activities isolated from the pollen of scots pine (Pinus sylvestris) grown on the Baikal shore

  • Denis V. Axenov-Gribanov
  • Irina V. Voytsekhovskaya
  • Yuriy V. Rebets
  • Bogdan T. Tokovenko
  • Tatyana A. Penzina
  • Tatyana G. Gornostay
  • Renat V. Adelshin
  • Eugenii S. Protasov
  • Andriy N. Luzhetskyy
  • Maxim A. Timofeyev
Original Article

Abstract

Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Scots pine trees (Pinus sylvestris) growing on the shore of the ancient Lake Baikal in Siberia. In addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens.

Keywords

Actinobacteria Baikal Lake Biodiversity Secondary metabolites Pinus sylvestris Amycolatopsis sp. Rhodococcus sp. Male cones Pollen 

Supplementary material

10482_2016_730_MOESM1_ESM.docx (384 kb)
Supplementary material 1 (DOCX 383 kb)

References

  1. Anderson KE, Carroll MJ, Sheehan T et al (2014) Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol Ecol 23:5904–5917. doi:10.1111/mec.12966 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anenkhonov OA, Boykov TG (2009) Vegetation of the Baikal region. Publishing House BSC SB RAS, Ulan-UdeGoogle Scholar
  3. Anné J, Van Mellaert L (1993) Streptomyces lividans as host for heterologous protein production. FEMS Microbiol Lett 144:121–128. doi:10.1111/j.1574-6968.1993.tb06561.x CrossRefGoogle Scholar
  4. Axenov-Gribanov D, Rebets Y, Tokovenko B et al (2015) The isolation and characterization of actinobacteria from dominant benthic macroinvertebrates endemic to Lake Baikal. Folia Microbiol (Praha). doi:10.1007/s12223-015-0421-z Google Scholar
  5. Boomsma J, Aanen D (2005) Evolutionary ecology: wasp mother’s little helpers. Curr Biol 15:R163–R165. doi:10.1016/j.cub.2005.02.040 CrossRefPubMedGoogle Scholar
  6. Castillo U, Harper JK, Strobel GA et al (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224(2):183–190. doi:10.1016/S0378-1097(03)00426-9 CrossRefPubMedGoogle Scholar
  7. Choi EM (2007) Antinociceptive and antiinflammatory activities of pine (Pinus densiflora) pollen extract. Phytother Res 21:471–475. doi:10.1002/ptr.2103 CrossRefPubMedGoogle Scholar
  8. Conn VM, Walker AR, Franco CMM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(2):208–218. doi:10.1094/MPMI-21-2-0208 CrossRefPubMedGoogle Scholar
  9. Currie CR, Scott JA, Summerbell RC, Malloch D (2003) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 423:461. doi:10.1038/Nature01563 CrossRefGoogle Scholar
  10. Dahm H (2013) Antagonistic properties of Streptomyces isolated from forest soils against fungal pathogens of pine seedlings. Dendrobiology 69:87–97. doi:10.12657/denbio.069.010 Google Scholar
  11. Doroghazi J, Albright J, Goering A (2014) A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem 10:963–968. doi:10.1038/nchembio.1659 CrossRefGoogle Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  13. Gan M, Zheng X, Gan L et al (2011) Streptothricin derivatives from Streptomyces sp. I08A 1776. J Nat Prod 74(5):1142–1147. doi:10.1021/np2000733 CrossRefPubMedGoogle Scholar
  14. Goodfellow M (2010) Selective isolation of actinobacteria. In: Manual of industrial microbiology and biotechnology, 3rd edn. American Society of Microbiology, Washington, p 13-27. doi: 10.1128/9781555816827.ch2
  15. Graf E, Schneider K, Nicholson G et al (2007) Elloxazinones A and B, new aminophenoxazinones from Streptomyces griseus Acta 2871. J Antibiot 60(4):277–284. doi:10.1038/Ja.2007.35 CrossRefPubMedGoogle Scholar
  16. Hamedi J, Mohammadipanah F (2015) Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 42:157–171. doi:10.1007/s10295-014-1537-x CrossRefPubMedGoogle Scholar
  17. Hanson J (2003) Natural products: the secondary metabolites. Royal Society of Chemistry, LondonGoogle Scholar
  18. Hayakawa M, Tamura T, Iino H, Nonomura H (1991) Pollen-baiting and drying method for the highly selective isolation of Actinoplanes spp. from soil. J Ferment Bioeng 72:433–438CrossRefGoogle Scholar
  19. Hirsch A, Valdés M (2010) Micromonospora: an important microbe for biomedicine and potentially for biocontrol and biofuels. Soil Biol Biochem 42:536–542. doi:10.1016/j.soilbio.2009.11.023 CrossRefGoogle Scholar
  20. Hu Z, Qin L, Wang Q, Ding W, Chen Z, Ma Z (2016) Angucycline antibiotics and its derivatives from marine-derived actinomycete Streptomyces sp. A6H. Nat Prod Res:1–8. doi:10.1080/14786419.2015.1120730
  21. Igarashi Y (2004) Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetologica 18(2):63–66. doi:10.3209/saj.18_63 CrossRefGoogle Scholar
  22. Iwai K, Aisaka K, Suzuki M (2010) Friedmanniella luteola sp. nov., Friedmanniella lucida sp. nov., Friedmanniella okinawensis sp. nov. and Friedmaniella sagamiharensis sp. nov., isolated from spiders. Int J Syst Evol Microbiol 60:113–120. doi:10.1099/ijs.0.007815-0 CrossRefPubMedGoogle Scholar
  23. Jacquemyn H, Lenaerts M, Brys R et al (2013a) Among-population variation in microbial community structure in the floral nectar of the bee-pollinated forest herb Pulmonaria officinalis L. PLoS ONE 8:e56917. doi:10.1371/journal.pone.0056917 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jacquemyn H, Lenaerts M, Tyteca D, Lievens B (2013b) Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species. Microbiologyopen 2:644–658. doi:10.1002/mbo3.103 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jasim B, Soumya R, Jyothis M, Radhakrishnan EK (2015) Exploration of actinomycetes endophytically associated with Piper nigrum for potential bioactivity. J Microbiol Biotechnol Food Sci 4:282–286. doi:10.15414/jmbfs.2015.4.4.282-286 CrossRefGoogle Scholar
  26. Jayasuriya H, Herath KB, Zhang C et al (2007) Isolation and Structure of Platencin: a FabH and FabF Dual Inhibitor with Potent Broad-Spectrum Antibiotic Activity. Angew Chem Int Edit 46(25):4684–4688. doi:10.1002/anie.200701058 CrossRefGoogle Scholar
  27. Jenke-Kodama H, Dittmann E (2009) Evolution of metabolic diversity: insights from microbial polyketide synthases. Phytochemistry 70:1858–1866. doi:10.1016/j.phytochem.2009.05.021 CrossRefPubMedGoogle Scholar
  28. Kadiri S, Yarla N, Vidavalur S (2014) Screening and isolation of antagonistic actinobacteria associated with marine sponges from Indian coast. J Med Biochem Technol S 8:003. doi:10.4172/1948-5948.S8-003 Google Scholar
  29. Karthik L, Kumar G, Bhaskara Rao KV (2013) Antioxidant activity of newly discovered lineage of marine actinobacteria. Asian Pac J Trop Med 6:325–332. doi:10.1016/S1995-7645(13)60065-6 CrossRefPubMedGoogle Scholar
  30. Kieser B, Buttner M, Charter K, Hopwood B (2000) Practical streptomyces genetics. John Innes Foundation, NorwichGoogle Scholar
  31. Kishi K, Yazawa K, Takahashi K et al (1984) Structure-activity relationships of saframycins. J. Antibiotics. 37(8):847–852. doi:10.7164/antibiotics.37.847 Google Scholar
  32. Krell R (1996) Value-added Products from Beekeeping. Food and Agriculture Org, RomeGoogle Scholar
  33. Kroiss J, Kaltenpoth M, Schneider B et al (2010) Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6:261–263. doi:10.1038/nchembio.331 CrossRefPubMedGoogle Scholar
  34. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol msw054. doi:10.1093/molbev/msw054
  35. Lacret R, Oves-Costales D, Gómez C et al (2014) New Ikarugamycin Derivatives with Antifungal and Antibacterial Properties from Streptomyces zhaozhouensis. Mar Drugs 13(1):128–140. doi:10.3390/md13010128 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lee K-H, Kim A-J, Choi E-M (2009) Antioxidant and antiinflammatory activity of pine pollen extract in vitro. Phyther Res 23:41–48. doi:10.1002/ptr.2525 CrossRefGoogle Scholar
  37. Lin L, Ge HM, Yan T, Qin YH, Tan RX (2012) Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta 236(6):1849–1861. doi:10.1007/s00425-012-1741-8 CrossRefPubMedGoogle Scholar
  38. Liu YY, Wang Y, Walsh TR et al (2015) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16(2):161–168. doi:10.1016/S1473-3099(15)00424-7 CrossRefPubMedGoogle Scholar
  39. Lyell D, Pullen K, Mannan J (2008) Maintenance nifedipine tocolysis compared with placebo: a randomized controlled trial. Obstet 112:1221–1226. doi:10.1097/AOG.0b013e31818d8386 CrossRefGoogle Scholar
  40. Nikapitiya C (2012) Bioactive secondary metabolites from marine microbes for drug discovery. Adv Food Nutr Res 65:363–387. doi:10.1016/B978-0-12-416003-3.00024-x CrossRefPubMedGoogle Scholar
  41. Nonomura H (1979) Classification of actinomycetes of genus Ampullariella from soils of Japan. J Soc Ferment Technol 57:79–85Google Scholar
  42. Patil P, Zeng Y (2010) Isolation and characterization of a Nocardiopsis sp. from honeybee guts. FEMS Microbiol Lett 312:110–118. doi:10.1111/j.1574-6968.2010.02104.x CrossRefPubMedGoogle Scholar
  43. Pearce CJ, West RR, Carter GT (1995) The effect of sinefungin on the biosynthesis of ganefromycin. Structures of ganefromycins δ 1–4. Tetrahedron Lett 36(11):1809–1812. doi:10.1016/0040-4039(95)00149-7 CrossRefGoogle Scholar
  44. Petzke L, Luzhetskyy A (2009) In vivo Tn5-based transposon mutagenesis of Streptomycetes. Appl Microbiol Biotechnol 83:979–986. doi:10.1007/s00253-009-2047-z CrossRefPubMedGoogle Scholar
  45. Pozo M, Lievens B, Jacquemyn H (2014) Impact of microorganisms on nectar chemistry, pollinator attraction and plant fitness. In: Nectar: production, chemical composition and benefits to animals and plants. Nova Science Publishers, Inc., New York CityGoogle Scholar
  46. Pullen C, Schmitz P, Meurer K (2002) New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae. Planta 216:162–167. doi:10.1007/s00425-002-0874-6 CrossRefPubMedGoogle Scholar
  47. Pyhalova TD, Tubanova AH, Anenkhonov OA (2009) Higher plants. Publishing House BSC SB RAS, Ulan-UdeGoogle Scholar
  48. Qin S, Xing K, Jiang J-H et al (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473. doi:10.1007/s00253-010-2923-6 CrossRefPubMedGoogle Scholar
  49. Ruangpan L, Tendencia E (2004) Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquatic animals and environment. Southeast Asian Fisheries Development Center, Aquaculture DepartmentGoogle Scholar
  50. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  51. Salla TD, da Silva TR, Astarita LV, Santarém ER (2014) Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants. Plant Physiol Bioch 85:14–20. doi:10.1016/j.plaphy.2014.10.008 CrossRefGoogle Scholar
  52. Salve PC, Barreira MT (2015) U.S. Patent No. 9,192,568. Washington, DC:U.S. Patent and Trademark OfficeGoogle Scholar
  53. Sarker S, Latif Z, Gray A (2005) Natural products isolation. Springer, BerlinGoogle Scholar
  54. Schatz A, Bugle E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against Gram-Positive and Gram-Negative Bacteria. Exp Biol Med 55(1):66–69. doi:10.3181/00379727-55-14461 CrossRefGoogle Scholar
  55. Seipke RF, Kaltenpoth M, Hutchings MI (2011) Streptomyces as symbionts:an emerging and widespread theme? FEMS Microbiol Rev 36:862–876. doi:10.1111/j.1574-6976.2011.00313.x CrossRefPubMedGoogle Scholar
  56. Seyoum A, Asres K, El-Fiky F (2006) Structure–radical scavenging activity relationships of flavonoids. Phytochemistry 67:2058–2070. doi:10.1016/j.phytochem.2006.07.002 CrossRefPubMedGoogle Scholar
  57. Sherman DH, Kaufman-Schofield MM, Jain S et al (2015) U.S. Patent No. 20,150,361,470. Patent and Trademark Office, WashingtonGoogle Scholar
  58. Solans M (2007) Discaria trinervis–Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250CrossRefPubMedGoogle Scholar
  59. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  60. Tiwari K, Gupta RK (2013) Diversity and isolation of rare actinomycetes: an overview. Crit Rev Microbiol 39:256–294. doi:10.3109/1040841X.2012.709819 CrossRefPubMedGoogle Scholar
  61. Traxler MF, Kolter R (2015) Natural products in soil microbe interactions and evolution. Nat Prod Rep 32:956–970. doi:10.1039/C5NP00013K CrossRefPubMedGoogle Scholar
  62. Wang Y, Wang H, Zhang Z (2005) Analysis of pine pollen by using FTIR, SEM and energy-dispersive X-ray analysis. Guang Pu Xue Yu Guang Pu Fen Xi 25:1797–1800PubMedGoogle Scholar
  63. Whittle M, Willett P (2003) Evaluation of similarity measures for searching the dictionary of natural products database. J Chem Inf Comput Sci 43:449–457. doi:10.1021/ci025591m CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Denis V. Axenov-Gribanov
    • 1
  • Irina V. Voytsekhovskaya
    • 1
  • Yuriy V. Rebets
    • 2
  • Bogdan T. Tokovenko
    • 2
  • Tatyana A. Penzina
    • 1
    • 4
  • Tatyana G. Gornostay
    • 4
  • Renat V. Adelshin
    • 1
    • 5
  • Eugenii S. Protasov
    • 1
  • Andriy N. Luzhetskyy
    • 2
    • 3
  • Maxim A. Timofeyev
    • 1
  1. 1.Institute of Biology at Irkutsk State UniversityIrkutskRussia
  2. 2.Helmholtz Institute for Pharmaceutical Research SaarlandSaarbruckenGermany
  3. 3.Pharmazeutische BiotechnologieUniversität des SaarlandesSaarbruckenGermany
  4. 4.Siberian Institute of Plant Physiology and Biochemistry SB RASIrkutskRussia
  5. 5.Irkutsk Anti-Plague Research Institute of Siberia and Far EastIrkutskRussia

Personalised recommendations