Advertisement

Antonie van Leeuwenhoek

, Volume 109, Issue 8, pp 1091–1100 | Cite as

Thalassospira australica sp. nov. isolated from sea water

  • Elena P. IvanovaEmail author
  • Mario López-Pérez
  • Hayden K. Webb
  • Hooi Jun Ng
  • Thi Hoang Yen Dang
  • Natalia V. Zhukova
  • Valery V. Mikhailov
  • Russell J. Crawford
  • Francisco Rodriguez-Valera
Original Paper

Abstract

Two Gram-negative, non-pigmented, motile bacteria were isolated from a sea water sample collected at St. Kilda Beach, Port Philip Bay, Victoria, Australia. The two strains were found to grow between 4 and 40 °C, pH 5–10 and tolerate up to 10 % NaCl. A phylogenetic study, based on a 16S rRNA gene sequence analysis indicated that strains NP 3b2T and H 94 belong to the genus Thalassospira. The sequence similarity of the 16S rRNA gene between the two new isolates is 99.8 % and between these strains and all validly named Thalassospira species was found to be in the range of 95–99.4 %. The DNA–DNA relatedness between the two strains was found to be 80.2 %, while relatedness with other validly named species of the genus Thalassospira was between 53 and 65 %. The average nucleotide identity (ANI) and the in silico genome-to-genome distance (GGD) between the two bacteria and T. profundimaris WP0211T, T. xiamenensis M-5T, ‘T. permensis’ NBRC 106175T and T. lucentensis QMT2T was 76–82 % and 21–25 %, respectively. The results of phylogenetic and genomic analysis, together with physiological and biochemical properties, indicated that the two strains represent a new species of the genus Thalassospira. Based on these data, a new species, Thalassospira australica, is proposed with strain NP 3b2T (=KMM 6365T = JCM 31222T) as the type strain.

Keywords

Thalassospira Marine bacteria Taxonomy Phylogeny Genomic taxonomy New species 

Notes

Acknowledgments

Financial support was provided by the Russian Science Foundation (Contract No. 14-50-00034) to N.V. Zhukova for lipid analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2016_710_MOESM1_ESM.doc (788 kb)
Supplementary material 1 (DOC 785 kb)

References

  1. Amaral GRS, Dias GM, Wellington-Oguri M, Chimetto L, Campeão ME, Thompson FL, Thompson CC (2014) Genotype to phenotype: identification of diagnostic vibrio phenotypes using whole genome sequences. Int J Syst Evol Microbiol 64:357–365CrossRefPubMedGoogle Scholar
  2. Azzarello M, Van Vleet E (1987) Marine birds and plastic pollution. Mar Ecol Prog Ser 37:295–303CrossRefGoogle Scholar
  3. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917CrossRefGoogle Scholar
  4. Collins MD, Shah HN (1984) Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 137:247–249CrossRefGoogle Scholar
  5. Driedger AGJ, Dürr HH, Mitchell K, Van Cappellen P (2015) Plastic debris in the Laurentian Great Lakes: a review. J Great Lakes Res 41:9–19CrossRefGoogle Scholar
  6. Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:590–592CrossRefPubMedGoogle Scholar
  7. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  8. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  9. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576CrossRefPubMedGoogle Scholar
  10. Gonzalez JM, Saiz-Jimenez C (2005) A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79CrossRefPubMedGoogle Scholar
  11. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91CrossRefPubMedGoogle Scholar
  12. Gregory MR (2009) Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc B 364:2013–2025CrossRefGoogle Scholar
  13. Gross M (2015) Oceans of plastic waste. Curr Biol 25:R93–R96CrossRefPubMedGoogle Scholar
  14. Ivanova EP, Kiprianova EA, Mikhailov VV, Levanova GF, Garagulya AD, Gorshkova NM, Yumoto N, Yoshikawa S (1996) Characterization and identification of marine Alteromonas nigrifaciens strains and emendation of the description. Int J Syst Bacteriol 46:223–228CrossRefGoogle Scholar
  15. Ivanova EP, Gorshkova NM, Mikhailov VV, Sergeev AF, Gladkikh RV, Goryachev VA, Dudarev OV, Botsul AI, Mozherovsky AV, Slinko EN, Kiselev VI (2005) Distribution of saprophytic bacteria in the atomic submarine accident zone in Chazhma Bay, Sea of Japan. Russ J Mar Biol 31:65–72CrossRefGoogle Scholar
  16. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351CrossRefPubMedGoogle Scholar
  17. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  18. Kodama Y, Stiknowati LI, Ueki A, Ueki K, Watanabe K (2008) Thalassospira tepidiphila sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater. Int J Syst Evol Microbiol 58:711–715CrossRefPubMedGoogle Scholar
  19. Law KL, Morét-Ferguson S, Maximenko NA, Proskurowski G, Peacock EE, Hafner J, Reddy CM (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329:1185–1188CrossRefPubMedGoogle Scholar
  20. Liu C, Wu Y, Li L, Yingfei M, Shao Z (2007) Thalassospira xiamenensis sp. nov. and Thalassospira profundimaris sp. nov. Int J Syst Evol Microbiol 57:316–320CrossRefPubMedGoogle Scholar
  21. López-López A, Pujalte MJ, Benlloch S, Mata-Roig M, Rosselló-Mora R, Garay E, Rodríguez-Valera F (2002) Thalassospira lucentensis gen. nov., sp. nov., a new marine member of the α-Proteobacteria. Int J Syst Evol Microbiol 52:1277–1283PubMedGoogle Scholar
  22. López-Pérez M, Rodriguez-Valera F, Crawford R, Ivanova E (2014) Genome Sequence of “Thalassospira australica” NP3b2T Isolated from St. Kilda Beach, Tasman Sea. Genome Announc 2:1–2CrossRefGoogle Scholar
  23. Moore CJ, Moore SL, Leecaster MK, Weisberg SB (2001) A comparison of plastic and plankton in the North Pacific Central Gyre. Mar Pollut Bull 42:1297–1300CrossRefPubMedGoogle Scholar
  24. Ng HJ, Webb HK, Crawford RJ, Malherbe F, Butt H, Knight R, Mikhailov VV, Ivanova EP (2013) Updating the taxonomic toolbox: classification of Alteromonas spp. using multilocus phylogenetic analysis and MALDI-TOF mass spectrometry. Anto Leeuw Int J G 103:265–275CrossRefGoogle Scholar
  25. Ng HJ, Ló Pez-Pé Rez M, Webb HK, Gomez D, Sawabe T, Ryan J, Vyssotski M, Bizet C, Malherbe F, Mikhailov VV, Crawford RJ, Ivanova EP (2014) Marinobacter salarius sp. nov. and marinobacter similis sp. nov., isolated from sea water. PLoS One 9:1–11Google Scholar
  26. Nogi Y, Yoshizumi M, Miyazaki M (2014) Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium. Int J Syst Evol Microbiol 64:1149–1153CrossRefPubMedGoogle Scholar
  27. Plotnikova EG, Anan’ina LN, Krausova VI, Ariskina EV, Prisyazhnaya NV, Lebedev AT, Demakov VA, Evtushenko LI (2011) Thalassospira permensis sp. nov., a new terrestrial halotolerant bacterium isolated from a naphthalene-utilizing microbial consortium. Microbiology 80:703–712CrossRefGoogle Scholar
  28. Provencher JF, Bond AL, Mallory ML (2015) Marine birds and plastic debris in Canada: a national synthesis and a way forward. Environ Rev 23:1–13CrossRefGoogle Scholar
  29. Pulicherla KK, Kumar PS, Manideep K, Rekha VPB, Ghosh M, Rao KRSS (2013) Statistical approach for the enhanced production of cold-active β-galactosidase from thalassospira frigidphilosprofundus: a novel marine psychrophile from deep waters of bay of bengal. Prep Biochem Biotechnol 43:766–780CrossRefPubMedGoogle Scholar
  30. Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M, Sentausa E, Raoult D, Fournier PE (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64:384–391CrossRefPubMedGoogle Scholar
  31. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131CrossRefPubMedPubMedCentralGoogle Scholar
  32. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  33. Sasser M (1990) Technical Note 101: Identification of bacteria by gas chromatography of cellular fatty acids. MIDI, NewarkGoogle Scholar
  34. Sheavly SB, Register KM (2007) Marine debris and plastics: environmental concerns, sources, impacts and solutions. J Polym Environ 15:301–305CrossRefGoogle Scholar
  35. Shivaji S, Sathyanarayana Reddy G, Sundareswaran VR, Thomas C (2015) Description of Thalassospira lohafexi sp. nov., isolated from Southern Ocean, Antarctica. Arch Microbiol 197:627–637CrossRefPubMedGoogle Scholar
  36. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  37. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genomics 14:1–8CrossRefGoogle Scholar
  38. Tsubouchi T, Ohta Y, Haga T, Usui K, Shimane Y, Mori K, Tanizaki A, Adachi A, Kobayashi K, Yukawa K, Takagi E, Tame A, Uematsu K, Maruyama T, Hatada Y (2014) Thalassospira alkalitolerans sp. nov. and Thalassospira mesophila sp. nov., isolated from a decaying bamboo sunken in the marine environment, and emended description of the genus Thalassospira. Int J Syst Evol Microbiol 64:107–115CrossRefPubMedGoogle Scholar
  39. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464CrossRefGoogle Scholar
  40. Webb HK, Crawford RJ, Sawabe T, Ivanova EP (2009) Poly(ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes Environ 24:39–42CrossRefPubMedGoogle Scholar
  41. Zhao B, Wang H, Li R, Mao X (2010) Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 60:1125–1129CrossRefPubMedGoogle Scholar
  42. Zhou H, Wang H, Huang Y, Fang T (2016) Characterization of pyrene degradation by halophilic Thalassospira sp. strain TSL5-1 isolated from the coastal soil of Yellow Sea, China. Int Biodeter Biodegr 107:62–69CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Elena P. Ivanova
    • 1
    Email author
  • Mario López-Pérez
    • 2
  • Hayden K. Webb
    • 1
  • Hooi Jun Ng
    • 1
  • Thi Hoang Yen Dang
    • 1
  • Natalia V. Zhukova
    • 3
    • 4
  • Valery V. Mikhailov
    • 5
    • 6
  • Russell J. Crawford
    • 1
  • Francisco Rodriguez-Valera
    • 2
  1. 1.Swinburne University of TechnologyHawthornAustralia
  2. 2.Universidad Miguel HernandezSan Juan de AlicanteSpain
  3. 3.A.V. Zhirmunsky Institute of Marine Biology of the Far-Eastern Branch of the Russian Academy of SciencesVladivostokRussian Federation
  4. 4.Far Eastern Federal UniversityVladivostokRussian Federation
  5. 5.G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of SciencesVladivostokRussian Federation
  6. 6.Far Eastern Federal UniversityVladivostokRussian Federation

Personalised recommendations