Antonie van Leeuwenhoek

, Volume 109, Issue 5, pp 611–618 | Cite as

Roseomonas chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge

  • Cui-Wei Chu
  • Qing Chen
  • Cheng-Hong Wang
  • Hong-Mei Wang
  • Zhong-Guan Sun
  • Qin He
  • Jian HeEmail author
  • Jin-Gang GuEmail author
Original Paper


A Gram-negative, aerobic, short rod-shaped, pink-pigmented, non-motile bacterium, designated BUT-13T, was isolated from activated sludge of an herbicide-manufacturing wastewater treatment facility in Jiangsu province, China. Growth was observed at 0–5.5 % NaCl, pH 6.0–9.0 and 12–37 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BUT-13T is a member of the genus Roseomonas, and shows high sequence similarities to R. pecuniae N75T (98.0 %) and R. rosea 173-96T (97.5 %), and lower (<97 %) sequence similarities to all other Roseomonas species. Chemotaxonomic analysis revealed that strain BUT-13T possesses Q-10 as the predominant ubiquinone; summed feature 8 (C18:1 w7c and/or C18:1 w6c; 38.8 %), C18:0 (16.6 %), C16:0 (15.2 %), summed feature 3 (C16:1 ω6c and/or C16:1 ω7; 7.9 %) and C18:1 w9c (4.7 %) as the major fatty acids. The polar lipids were found to consist of two aminolipids, a glycolipid, a phospholipid, a phosphoglycolipid, phosphatidylcholine, phosphatidylethanolamine and diphosphatidylglycerol. Strain BUT-13T showed low DNA–DNA relatedness with R. pecuniae N75T (45.2 %) and R. rosea 173-96T (51.2 %). The DNA G+C content was determined to be 67.6 mol%. Based on the phylogenetic analysis, DNA–DNA hybridization and chemotaxonomic analysis, as well as biochemical characteristics, strain BUT-13T can be clearly distinguished from all currently recognised Roseomonas species and should be classified as a novel species of the genus Roseomonas, for which the name Roseomonas chloroacetimidivorans sp. nov. is proposed. The type strain is BUT-13T (CCTCC AB 2015299T = JCM 31050T).


Roseomonas chloroacetimidivorans sp. nov Polyphasic taxonomy Degrading 



This work was supported by the National science and technology support plan (2013AA102804), the National Natural Science Foundation of China (Grant no. 31270157, 31560033), the Program for New Century Excellent Talents in University (NCET-13-0861) and the Research Fund for the Doctoral Program of Zaozhuang University, China (2014BS14).

Supplementary material

10482_2016_664_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 10 kb)


  1. Baik KS, Park SC, Han NC, Kim SN, Moon JH, Seong CN (2012) Roseomonas riguiloci sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 62:3024–3029CrossRefPubMedGoogle Scholar
  2. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedGoogle Scholar
  3. Bibashi E, Sofianou D, Kontopoulou K, Mitsopoulos E, Kokolina E (2000) Peritonitis due to Roseomonas fauriae in a patient undergoing continuous ambulatory peritoneal dialysis. J Clin Microbiol 38:456–457PubMedPubMedCentralGoogle Scholar
  4. Chen Q, Sun LN, Zhang XX, He J, Kwon SW, Zhang J, Gu JG (2014) Roseomonas rhizosphaerae sp. nov., a triazophos-degrading bacterium isolated from soil. Int J Syst Evol Microbiol 64:1127–1133CrossRefPubMedGoogle Scholar
  5. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in Actinomycetes and Corynebacteria. J Gen Microbiol 100:221–230CrossRefPubMedGoogle Scholar
  6. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 39:224–229Google Scholar
  7. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  9. Furuhata K, Miyamoto H, Goto K, Kato Y, Hara M, Fukuyama M (2008) Roseomonas stagni sp. nov., isolated from pond water in Japan. J Gen Appl Microbiol l54:167–171CrossRefGoogle Scholar
  10. Gallego V, Sánchez-Porro C, García MT, Ventosa A (2006) Roseomonas aquatica sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 56:2291–2295CrossRefPubMedGoogle Scholar
  11. Han XY, Pham AS, Tarrand JJ, Rolston KV, Helsel LO, Levett PN (2003) Bacteriologic characterization of 36 strains of Roseomonas species and proposal of Roseomonas mucosa sp nov and Roseomonas gilardii subsp rosea subsp nov. Am J Clin Pathol 120:256–264CrossRefPubMedGoogle Scholar
  12. Jiang CY, Dai X, Wang BJ, Zhou YG, Liu SJ (2006) Roseomonas lacus sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 56:25–28CrossRefPubMedGoogle Scholar
  13. Kim DU, Ka JO (2014) Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 64:1024–1029CrossRefPubMedGoogle Scholar
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  15. Kim SJ, Weon HY, Ahn JH, Hong SB, Seok SJ, Whang KS, Kwon SW (2013) Roseomonas aerophila sp. nov., isolated from air. Int J Syst Evol Microbiol 63:2334–2337CrossRefPubMedGoogle Scholar
  16. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  17. Lane DL (1991) 16S/23S rRNA sequencing. In: Stackebrandt ER, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, United Kingdom, pp 115–175Google Scholar
  18. Mandel M, Marmur J (1968) Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206CrossRefGoogle Scholar
  19. McCarthy AJ, Cross T (1984) A taxonomic study of Thermomonospora and other monosporic Actinomycetes. J Gen Microbiol 130:5–25Google Scholar
  20. Rihs JD, Brenner DJ, Weaver RE, Steigerwalt AG, Hollis DG, Yu VL (1993) Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 31:3275–3283PubMedPubMedCentralGoogle Scholar
  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  22. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  23. Sánchez-Porro C, Gallego V, Busse HJ, Kämpfer P, Ventosa A (2009) Transfer of Teichococcus ludipueritiae and Muricoccus roseus to the genus Roseomonas, as Roseomonas ludipueritiae comb. nov. and Roseomonas rosea comb. nov., respectively, and emended description of the genus Roseomonas. Int J Syst Evol Microbiol 59:1193–1198CrossRefPubMedGoogle Scholar
  24. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI, NewarkGoogle Scholar
  25. Sfanos K, Harmody D, Dang P, Ledger A, Pomponi S, McCarthy P, Lopez J (2005) A molecular systematic survey of cultured microbial associates of deepwater marine invertebrates. Syst Appl Microbiol 28:242–264CrossRefPubMedGoogle Scholar
  26. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36CrossRefGoogle Scholar
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  29. Tindall BJ (1990a) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130CrossRefGoogle Scholar
  30. Tindall BJ (1990b) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Letts 66:199–202CrossRefGoogle Scholar
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray GRE (1987) International committee on systematic bacteriology: report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  32. Weyant RS, Whitney AM (2005) Roseomonas. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, part C. Springer, New York, pp 88–92CrossRefGoogle Scholar
  33. Yoon JH, Kang SJ, Oh HW, Oh TK (2007) Roseomonas terrae sp. nov. Int J Syst Evol Microbiol 57:2485–2488CrossRefPubMedGoogle Scholar
  34. Zhang J, Zheng JW, Liang B, Wang CH, Ni YY, Cai S, He J, Li SP (2011) Biodegradation of chloroacetamide herbicides by Paracoccus sp. FLY-8. J Agric Food Chem 59:4614–4621CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cui-Wei Chu
    • 1
  • Qing Chen
    • 2
  • Cheng-Hong Wang
    • 3
  • Hong-Mei Wang
    • 2
  • Zhong-Guan Sun
    • 2
  • Qin He
    • 1
  • Jian He
    • 1
    Email author
  • Jin-Gang Gu
    • 4
    Email author
  1. 1.Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life SciencesNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.College of Life SciencesZaozhuang UniversityZaozhuangPeople’s Republic of China
  3. 3.Key Laboratory of Systems Biology Medicine of Jiangxi Province, College of Basic Medical ScienceJiujiang UniversityJiujiangPeople’s Republic of China
  4. 4.Agricultural Culture Collection of China, Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations