Skip to main content
Log in

Characterization of genes encoding proteins containing HD-related output domain in Xanthomonas campestris pv. campestris

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The Gram-negative plant pathogen Xanthomonas campestris pv. campestris (Xcc) is the causative agent of black rot in crucifers. The production of Xcc virulence factors is regulated by Clp and RpfF. HD-related output domain (HDOD) is a protein domain of unknown biochemical function. The genome of Xcc encodes three proteins (GsmR, HdpA, and HdpB) with an HDOD. The GsmR has been reported to play a role in the general stress response and cell motility and its expression is positively regulated by Clp. Here, the function and transcription of hdpA and hdpB were characterized. Mutation of hdpA resulted in enhanced bacterial attachment. In addition, the expression of hdpA was positively regulated by RpfF but not by Clp, subject to catabolite repression and affected by several stress conditions. However, mutational analysis and reporter assay showed that hdpB had no effect on the production of a range of virulence factors and its expression was independent of Clp and RpfF. The results shown here not only extend the previous work on RpfF regulation to show that it influences the expression of hdpA in Xcc, but also expand knowledge of the function of the HDOD containing proteins in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAP:

Abridged anchor primer

AUAP:

Abridged universal amplification primer

DSF:

Diffusible signal factor

HDOD:

HD-related output domain

RACE:

Rapid amplification of cDNA ends

rpf :

Regulation of pathogenicity factors

Xcc:

Xanthomonas campestris pv. campestris

References

  • An SQ et al (2013) High-resolution transcriptional analysis of the regulatory influence of cell-to-cell signalling reveals novel genes that contribute to Xanthomonas phytopathogenesis. Mol Microbiol 88:1058–1069. doi:10.1111/mmi.12229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber CE et al (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ et al (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193:5450–5464. doi:10.1128/JB.05262-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34:107–133. doi:10.1111/j.1574-6976.2009.00192.x

    Article  PubMed  Google Scholar 

  • Chan JW, Goodwin PH (1999) The molecular genetics of virulence of Xanthomonas campestris. Biotechnol Adv 17:489–508

    Article  CAS  PubMed  Google Scholar 

  • Crossman LC et al (2008) The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74. doi:10.1186/gb-2008-9-4-r74

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva AC et al (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463

    Article  PubMed  Google Scholar 

  • Darrasse A et al (2013) Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genom 14:761. doi:10.1186/1471-2164-14-761

    Article  CAS  Google Scholar 

  • Dow JM, Daniels MJ (1994) Pathogenicity determinants and global regulation of pathogenicity of Xanthomonas campestris pv. campestris. Curr Top Microbiol Immunol 192:29–41

    CAS  PubMed  Google Scholar 

  • Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000. doi:10.1073/pnas.1833360100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230. doi:10.1093/nar/gkt1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu JF, Tseng YH (1990) Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl Environ Microbiol 56:919–923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182. doi:10.1128/JB.01887-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • He YW, Wang C, Zhou L, Song H, Dow JM, Zhang LH (2006a) Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction. J Biol Chem 281:33414–33421

    Article  CAS  PubMed  Google Scholar 

  • He YW et al (2006b) Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. Mol Microbiol 59:610–622

    Article  CAS  PubMed  Google Scholar 

  • He YW, Ng AY, Xu M, Lin K, Wang LH, Dong YH, Zhang LH (2007) Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol 64:281–292

    Article  CAS  PubMed  Google Scholar 

  • Hendrixson DR, DiRita VJ (2004) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52:471–484

    Article  CAS  PubMed  Google Scholar 

  • Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273. doi:10.1038/nrmicro2109

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YM, Liao HY, Lee MC, Yang TC, Tseng YH (2005) Clp upregulates transcription of engA gene encoding a virulence factor in Xanthomonas campestris by direct binding to the upstream tandem Clp sites. FEBS Lett 579:3525–3533

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YM, Zheng MH, Hu RM, Yang TC, Tseng YH (2008) Regulation of the pehA gene encoding the major polygalacturonase of Xanthomonas campestris by Clp and RpfF. Microbiology 154:705–713

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YM, Liu YF, Fang MC, Song WL (2011a) XCC2731, a GGDEF domain protein in Xanthomonas campestris, is involved in bacterial attachment and is positively regulated by Clp. Microbiol Res 166:548–565. doi:10.1016/j.micres.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YM, Liu YF, Lee PY, Hsu PC, Tseng SY, Pan YC (2011b) Functional characterization of copA gene encoding multicopper oxidase in Xanthomonas campestris pv. campestris. J Agric Food Chem 59:9290–9302. doi:10.1021/jf2024006

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YM, Song WL, Liao CT, Lin IH, Pan MY, Lin CF (2012) Transcriptional analysis and functional characterization of XCC1294 gene encoding a GGDEF domain protein in Xanthomonas campestris pv. campestris. Arch Microbiol 194:293–304. doi:10.1007/s00203-011-0760-3

    Article  CAS  PubMed  Google Scholar 

  • Jalan N et al (2011) Comparative genomic analysis of Xanthomonas axonopodis pv. citrumelo F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity. J Bacteriol 193:6342–6357. doi:10.1128/JB.05777-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalan N, Kumar D, Yu F, Jones JB, Graham JH, Wang N (2013) Complete genome sequence of Xanthomonas citri subsp. citri strain Aw12879, a restricted-host-range citrus canker-causing bacterium. Genome Announc 1:e00235–00213 doi:10.1128/genomeA.00235-13

  • Jenal U (2004) Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr Opin Microbiol 7:185–191. doi:10.1016/j.mib.2004.02.007

    Article  CAS  PubMed  Google Scholar 

  • Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407. doi:10.1146/annurev.genet.40.110405.090423

    Article  CAS  PubMed  Google Scholar 

  • Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197

    Article  CAS  PubMed  Google Scholar 

  • Lee TC, Chen ST, Lee MC, Chang CM, Chen CH, Weng SF, Tseng YH (2001) The early stages of filamentous phage ϕLf infection require the host transcription factor. Clp J Mol Microbiol Biotechnol 3:471–481

    CAS  PubMed  Google Scholar 

  • Liao CT, Du SC, Lo HH, Hsiao YM (2014) The galU gene of Xanthomonas campestris pv. campestris is involved in bacterial attachment, cell motility, polysaccharide synthesis, virulence, and tolerance to various stresses. Arch Microbiol 196:729–738. doi:10.1007/s00203-014-1012-0

    Article  CAS  PubMed  Google Scholar 

  • Lira F, Hernandez A, Belda E, Sanchez MB, Moya A, Silva FJ, Martinez JL (2012) Whole-genome sequence of Stenotrophomonas maltophilia D457, a clinical isolate and a model strain. J Bacteriol 194:3563–3564. doi:10.1128/JB.00602-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YF, Liao CT, Song WL, Hsu PC, Du SC, Lo HH, Hsiao YM (2013) GsmR, a response regulator with an HD-related output domain in Xanthomonas campestris, is positively controlled by Clp and is involved in the expression of genes responsible for flagellum synthesis. FEBS J 280:199–213. doi:10.1111/febs.12061

    Article  CAS  PubMed  Google Scholar 

  • McCarthy Y et al (2008) The role of PilZ domain proteins in the virulence of Xanthomonas campestris pv. campestris. Mol Plant Pathol 9:819–824. doi:10.1111/j.1364-3703.2008.00495.x

    Article  CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Habor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Muller D et al (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. Plos Genet 3:e53. doi:10.1371/journal.pgen.0030053

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian W et al (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15:757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian W, Han ZJ, Tao J, He C (2008) Genome-scale mutagenesis and phenotypic characterization of two-component signal transduction systems in Xanthomonas campestris pv. campestris ATCC 33913. Mol Plant Microbe Interact 21:1128–1138. doi:10.1094/MPMI-21-8-1128

    Article  CAS  PubMed  Google Scholar 

  • Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57:629–639. doi:10.1111/j.1365-2958.2005.04697.x

    Article  PubMed  Google Scholar 

  • Ryan RP et al (2006) Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci USA 103:6712–6717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RP et al (2007) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63:429–442

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, McCarthy Y, Andrade M, Farah CS, Armitage JP, Dow JM (2010) Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci USA 107:5989–5994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RP, McCarthy Y, Kiely PA, O’Connor R, Farah CS, Armitage JP, Dow JM (2012) Dynamic complex formation between HD-GYP, GGDEF and PilZ domain proteins regulates motility in Xanthomonas campestris. Mol Microbiol 86:557–567. doi:10.1111/mmi.12000

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Habor Press, Cold Spring Harbor

    Google Scholar 

  • Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7:724–735. doi:10.1038/nrmicro2203

    Article  CAS  PubMed  Google Scholar 

  • Schweizer HD (1993) Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–834

    CAS  PubMed  Google Scholar 

  • Slater H, Alvarez-Morales A, Barber CE, Daniels MJ, Dow JM (2000) A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38:986–1003

    Article  CAS  PubMed  Google Scholar 

  • Thieme F et al (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 187:7254–7266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng YH et al (1999) Chromosome map of Xanthomonas campestris pv. campestris 17 with locations of genes involved in xanthan gum synthesis and yellow pigmentation. J Bacteriol 181:117–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira J, Messing J (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194

    Article  CAS  PubMed  Google Scholar 

  • Vorholter FJ et al (2008) The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 134:33–45

    Article  PubMed  Google Scholar 

  • Wang TW, Tseng YH (1992) Electrotransformation of Xanthomonas campestris by RF DNA of filamentous phage ϕLf. Lett Appl Microbiol 14:65–68

    Article  PubMed  Google Scholar 

  • Williams PH (1980) Black rot: a continuing threat to world crucifers. Plant Dis 64:736–742

    Article  Google Scholar 

  • Yang BY, Tseng YH (1988) Production of exopolysaccharide and levels of protease and pectinase activity in pathogenic and non-pathogenic strains of Xanthomonas campestris pv. campestris. Bot Bull Acad Sin 29:93–99

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Council of Taiwan Grant No. NSC 101-2313-B-166-001-MY3 to Yi-Min Hsiao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Min Hsiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HM., Liao, CT., Chiang, YC. et al. Characterization of genes encoding proteins containing HD-related output domain in Xanthomonas campestris pv. campestris. Antonie van Leeuwenhoek 109, 509–522 (2016). https://doi.org/10.1007/s10482-016-0656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0656-y

Keywords

Navigation