Microvirga makkahensis sp. nov., and Microvirga arabica sp. nov., isolated from sandy arid soil

Abstract

The taxonomic positions of two Gram-negative strains, SV1470T and SV2184PT, isolated from arid soil samples, were determined using a polyphasic approach. Analysis of the 16S rRNA gene and the concatenated sequences of three housekeeping gene loci (dnaK, rpoB and gyrB) confirmed that the strains belong to the genus Microvirga. Strain SV1470T was found to be closely related to Microvirga vignae BR3299T (98.8 %), Microvirga flocculans TFBT (98.3 %) and Microvirga lupini Lut6T (98.2 %), whilst similarity to other type strains of the genus ranged from 97.8 to 96.3 %; strain SV2184PT was found to be closely related to Microvirga aerilata 5420S-16T (98.0 %), Microvirga zambiensis WSM3693T (97.8 %) and M. flocculans ATCC BAA-817T (97.4 %), whilst similarity to other type strains of the genus ranged from 97.2 to 95.9 %. The G + C content of the genomic DNA was determined to be 61.5 mol  % for strain SV1470T and 62.1 mol  % for strain SV2184PT. Both strains were found to have the same quinone system, with Q-10 as the major ubiquinone. The polar lipid profile of strain SV1470T was found to consist of phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid and one unidentified aminolipid, while that of strain SV2184PT consisted of phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, one unidentified aminolipid, one unidentified aminophospholipid and two unidentified phospholipids. DNA–DNA relatedness studies showed that the two strains belong to different genomic species. The strains were also distinguished using a combination of phenotypic properties. Based on the genotypic and phenotypic data, the novel species Microvirga makkahensis sp. nov. (type strain SV1470T = DSM 25394T = KCTC 23863T = NRRL-B 24875T) and Microvirga arabica sp. nov. (type strain SV2184PT = DSM 25393T = KCTC 23864T = NRRL-B 24874T) are proposed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ardley J-K, Parker M-A, De Meyer S-E, Trengove R-D, O’hara G-W, Reeve W-G, Yates R-J, Dilworth M-J, Willems A, Howieson J-G (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588

    Article  CAS  PubMed  Google Scholar 

  2. Cashion P, Holder-Franklin MA, Mc Cully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  CAS  PubMed  Google Scholar 

  3. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:143–153

    Article  PubMed  Google Scholar 

  4. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  5. Felsenstein J (1985) Confidence limits on phylogeny: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  6. Gonzalez JM, Saiz-Jimenez C (2005) A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79

    Article  CAS  PubMed  Google Scholar 

  7. Gordon RE, Barnett DA, Handerhan JE, Pang CH (1974) Nocardia coeliaca, Nocardia autotrophica, and the Nocardia strain. Int J Syst Bacteriol 24:54–63

    Article  Google Scholar 

  8. Greene RA, Blum EF, DeCoro CT, Fairchild RB, Kaplan MT, Landau JT, Sharp TS (1951) Rapid methods for the detection of motility. J Bacteriol 62:347

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  10. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  11. Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  12. Kanso S, Patel BKC (2003) Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406

    Article  CAS  PubMed  Google Scholar 

  13. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  14. Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  15. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  16. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  17. Nash P, Krent MM (1991) Culture media. In: Ballows A, Hauser WJ, Herrmann KL, Isenberg HD, Shadomy HJ (eds) Manual of clinical microbiology, 5th edn. American Society for Microbiology, Washington, DC, pp 1268–1270

    Google Scholar 

  18. Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LMV, Xavier GR, Rumjanek NG, Baldani JI, Zilli JE (2014) Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Bacteriol 3:725–730

    Article  Google Scholar 

  19. Saitou N, Nei M (1987) The neighbor-joining method. A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  20. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. MIDI Inc, Newark, DE

  21. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  22. Takeda M, Suzuki I, Koizumi JI (2004) Balneomonas flocculans gen. nov., sp. nov., a new cellulose-producing member of the α-2 subclass of Proteobacteria. Syst Appl Microbiol 27:139–145

    Article  CAS  PubMed  Google Scholar 

  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  24. Tan GY, Ward AC, Goodfellow M (2006) Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Syst Appl Microbiol 29:557–569

    Article  CAS  PubMed  Google Scholar 

  25. Tindall BJ (1990a) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    Article  CAS  Google Scholar 

  26. Tindall BJ (1990b) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  27. Weon H-Y, Kwon S-W, Son J-A, Jo E-H, Kim S-J, Kim Y-S, Kim B-Y, Ka J-O et al (2010) Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda, 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga. Int J Syst Evol Microbiol 60:2596–2600

    Article  CAS  PubMed  Google Scholar 

  28. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  29. Zhang J, Song F, Xin YH, Zhang J, Fang C (2009) Microvirga guangxiensis sp. nov., a novel alphaproteobacterium from soil, and emended description of the genus Microvirga. Int J Syst Evol Microbiol 59:1997–2001

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Ondokuz Mayis University (OMU), Project No. PYO. FEN. 1901.09.003.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nevzat Sahin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10482_2015_631_MOESM1_ESM.jpg

Supplementary Fig. S1. Two-dimensional TLC of polar lipids from Microvirga makkahensis sp. nov. SV1470T. Molybdophosphoric acid was used as the spray reagent. PE, phosphatidylethanolamine; PC, phosphatidylcholine; PG, phosphatidylglycerol; PL, phospholipid; AL, aminolipid. Supplementary material 1 (JPEG 147 kb)

10482_2015_631_MOESM2_ESM.jpg

Supplementary Fig. S2. Two-dimensional TLC of polar lipids from Microvirga arabica sp. nov. SV2184PT. Molybdophosphoric acid was used as the spray reagent. PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PC, phosphatidylcholine; PME, phosphatidylmethylethanolamine; PL1-PL2, phospholipid; AL, aminolipid; PN, aminophospholipid. Supplementary material 2 (JPEG 152 kb)

Supplementary material 3 (DOC 299 kb)

Supplementary material 4 (DOC 42 kb)

Supplementary material 5 (DOC 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veyisoglu, A., Tatar, D., Saygin, H. et al. Microvirga makkahensis sp. nov., and Microvirga arabica sp. nov., isolated from sandy arid soil. Antonie van Leeuwenhoek 109, 287–296 (2016). https://doi.org/10.1007/s10482-015-0631-z

Download citation

Keywords

  • Proteobacteria
  • Alphaproteobacteria
  • Microvirga arabica
  • Microvirga makkahensis
  • Polyphasic taxonomy