Paenibacillus chinensis sp. nov., isolated from maize (Zea mays L.) seeds

Abstract

Four Gram-stain positive bacterial strains, designated as 4R1T, 4R9, 4L13 and 4L18, isolated from seeds of hybrid maize (Zea mays L., Jingke 968), were investigated using a polyphasic taxonomic approach. The cells were found to be facultatively aerobic, motile, spore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates should be recognised as a species of the genus Paenibacillus, with two close neighbours being Paenibacillus nicotianae YIM h-19T (98.41 % similarity) and Paenibacillus hordei RH-N24T (98.37 %). The DNA G+C content of strain 4R1T was determined to be 51.6 mol %. Its polar lipid profile was found to consist of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified lipid. The predominant respiratory quinone was identified as MK-7 and the major fatty acids were found to be anteiso-C15:0, anteiso-C12:0, anteiso-C13:0 and anteiso-C11:0. Strains 4R1T, 4R9, 4L13 and 4L18 were clearly distinguished from the reference type strains using phylogenetic analysis, DNA–DNA hybridization and a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that strains 4R1T, 4R9, 4L13 and 4L18 represent a novel species of the genus Paenibacillus, for which the name Paenibacillus chinensis sp. nov. is proposed. The type strain is 4R1T (=KCTC 33672T = CICC 23864T).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260

    Article  CAS  PubMed  Google Scholar 

  2. Chung YR, Kim CH, Hwang I, Chun J (2000) Paenibacillus koreensis sp.nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500

    Article  CAS  PubMed  Google Scholar 

  3. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 21–33

    Google Scholar 

  4. Eck RV, Dayhoff MO (1966) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Springs, Maryland

    Google Scholar 

  5. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridizationin which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  6. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  8. Fitch WM (1972) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  9. Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  10. Kim JM, Lee SH, Lee SH, Choi EJ, Jeon CO (2013) Paenibacillus hordei sp. nov., isolated from naked harley in Korea. Antonie Van Leeuwenhoek 103:3–9

    Article  PubMed  Google Scholar 

  11. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  12. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  13. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackerandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. John Willey and Sons Ltd, Chichester, England, pp 115–175

    Google Scholar 

  14. Liu Y, Liu L, Qiu FB, Schumann P, Shi Y, Zou YY, Zhang XX, Song W (2010) Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 60:1266–1270

    Article  CAS  PubMed  Google Scholar 

  15. Marmur J (1961) A procedure for the isolation of DNA from micro-organism. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  16. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  17. Priest FG (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41:711–753

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Qiu FB, Huang Y, Sun L, Zhang XX, Liu ZH, Song W (2007) Leifsonia ginsengi sp. nov., isolated from ginseng root. Int J Syst Evol Microbiol 57:405–408

    Article  PubMed  Google Scholar 

  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstruction phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  20. Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156

    Article  CAS  Google Scholar 

  21. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Slepecky R, Hemphill E (1992) The genus Bacillus-nonmedical. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer-Verlag, New York, pp 1663–1696

    Google Scholar 

  23. Smibert RM, Kreg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  25. Tang QY, Yang N, Wang J, Xie YQ, Ren B, Zhou YG, Gu MY, Mao J, Li WJ, Shi YH, Zhang LX (2011) Paenibacillus algorifonticola sp.nov., isolated from a cold spring. Int J Syst Evol Microbiol 61:2167–2172

    Article  CAS  PubMed  Google Scholar 

  26. Thompson JD, Gison TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  27. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  28. Weon-Taek S, Kahng GG, Nam SH, Choi SD, Suh HH, Kim SW, Park YH (1999) Isolation and characterization of a novel exopolysaccharide-producing Paenibacillus sp. WN9 KCTC 8951P. J Microbiol Biotechnol 9:820–825

    Google Scholar 

  29. Xiang WW, Wang GJ, Wang YT, Yao R, Zhang FJ, Wang R, Wang D, Zheng SX (2014) Paenibacillus selenii sp. nov., isolated from selenium mineral soil. Int J Syst Evol Microbiol 64:2662–2667

    Article  CAS  PubMed  Google Scholar 

  30. Yao R, Wang R, Wang D, Su J, Zheng SX, Wang GJ (2014) Paenibacillus selenitireducens sp.nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 64:805–811

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Beijing nova program (No. Z141105001814095), the Beijing nova interdisciplinary cooperational program (No. Z1511000003150150), the National Natural Science Foundation of China (No. 31300008), the Chinese Postdoctoral Science Foundation (No. 2015M570969), the fund of National Infrastructure of Microbial Resources (No. NIMR2015-4), and the Scientific and Technological Development Project of China, National Research Institute of Food and Fermentation Industries (No. 2012KJFZ-BS-01).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yang Liu or Jiuran Zhao or Chi Cheng.

Additional information

Yang Liu and Ran Zhao have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5404 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, R., Wang, R. et al. Paenibacillus chinensis sp. nov., isolated from maize (Zea mays L.) seeds. Antonie van Leeuwenhoek 109, 207–213 (2016). https://doi.org/10.1007/s10482-015-0622-0

Download citation

Keywords

  • Paenibacillus chinensis sp. nov.
  • Maize
  • 16S rRNA gene
  • Polyphasic taxonomy