Sphingobium soli sp. nov. isolated from rhizosphere soil of a rose

Abstract

Strain THG-SQA7T, a Gram-negative, strictly aerobic, non-motile, rod-shaped bacterium was isolated from rhizosphere soil of a rose in PR China. Strain THG-SQA7T is closely related to the members of the genus Sphingobium, showing the highest 16S rRNA gene sequence similarities with Sphingobium lactosutens KACC 18100T (98.2 %) and Sphingobium abikonense KCTC 2864T (98.1 %). The DNA–DNA relatedness between strain THG-SQA7T and S. lactosutens KACC 18100T and S. abikonense KCTC 2864T was 26.2 ± 0.9 and 28.3 ± 1.2 %, respectively. Chemotaxonomic data showed that strain THG-SQA7T possesses ubiquinone Q-10 as the predominant respiratory quinone, and C18:1 ω7c, C16:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and C14:0 2OH as the major fatty acids. The major polar lipids were found to be phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, sphingoglycolipid, diphosphatidylglycerol and phosphatidyldimethylethanolamine. Based on these results, together with phenotypic characterization, a novel species, Sphingobium soli sp. nov. is proposed.with the type strain is THG-SQA7T (=CCTCC AB 2015125T = KCTC 42607T).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Bala K, Sharma P, Lal R (2010) Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil. Int J Syst Evol Microbiol 60:429–433

    CAS  Article  PubMed  Google Scholar 

  2. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness. Int J Syst Bacteriol 39:224

    Article  Google Scholar 

  4. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  Article  PubMed  Google Scholar 

  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  6. Guo P, Wang BZ, Hang BJ, Li L, Li SP, He J (2010) Sphingobium faniae sp. nov., a pyrethroid-degrading bacterium isolated from activated sludge treating wastewater from pyrethroid manufacture. Int J Syst Evol Microbiol 60(2):408–412

    CAS  Article  PubMed  Google Scholar 

  7. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  8. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    CAS  Article  Google Scholar 

  9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon–e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    CAS  Article  PubMed  Google Scholar 

  10. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  12. Kumari H, Gupta SK, Jindal S, Katoch P, Lal R (2009) Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 59(9):2291–2296

    CAS  Article  PubMed  Google Scholar 

  13. Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T, Hamana K, Hiraishi A, Kato K (2006) Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89

    CAS  Article  PubMed  Google Scholar 

  14. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    CAS  Article  Google Scholar 

  15. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M (1977) Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117

    CAS  Article  Google Scholar 

  16. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    CAS  Article  Google Scholar 

  17. Moore DD, Dowhan D (1995) Preparation and analysis of DNA. In: Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2–11

    Google Scholar 

  18. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  19. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. DE: MIDI Inc, Newark

  20. Sheu SY, Shiau YW, Chen WM (2013) Sphingobium sufflavum sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 63(9):3444–3450

    CAS  Article  PubMed  Google Scholar 

  21. Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  22. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

    CAS  Google Scholar 

  23. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingobium sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    CAS  Article  PubMed  Google Scholar 

  24. Tamaoka J, Katayama-Fujiruma A, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacieriol 54:31–36

    CAS  Article  Google Scholar 

  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  27. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    CAS  Article  Google Scholar 

  28. Tindall BJ, Ramon Rosselló-Mora H-J, Busse Wolfgang Ludwig, Kämpfer Peter (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    CAS  Article  PubMed  Google Scholar 

  29. Wang BZ, Guo P, Zheng JW, Hang BJ, Li L, He J, Li SP (2011) Sphingobium wenxiniae sp. nov., a synthetic pyrethroid (SP)-degrading bacterium isolated from activated sludge in an SP-manufacturing wastewater treatment facility. Int J Syst Evol Microbiol 61:1776–1780

    CAS  Article  PubMed  Google Scholar 

  30. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Wittich RM, Busse HJ, Kämpfer P, Tiirola M, Wieser M, Macedo AJ, Abraham WR (2007) Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. Int J Syst Evol Microbiol 57(2):306–310

    CAS  Article  PubMed  Google Scholar 

  32. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingobium paucimobilis gen. nov. and comb. nov., Sphingobium parapaucimobilis sp. nov., Sphingobium yanoikuyae sp. nov., Sphingobium adhaesiva sp. nov., Sphingobium capsulata comb. nov., and two genospecies of the genus Sphingobium. Microbiol Immunol 34:99–119

    CAS  Article  PubMed  Google Scholar 

  33. Yan QX, Wang YX, Li SP, Li WJ, Hong Q (2010) Sphingobium qiguonii sp. nov., a carbaryl-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 60:2724–2728

    CAS  Article  PubMed  Google Scholar 

  34. Yasir M, Aslam Z, Song GC, Jeon CO, Chung YR (2010) Sphingosinicella vermicomposti sp. nov., isolated from vermicompost, and emended description of the genus Sphingosinicella. Int J Syst Evol Microbiol 60(3):580–584

    CAS  Article  PubMed  Google Scholar 

  35. Young CC, Ho MJ, Arun AB, Chen WM, Lai WA, Shen FT et al (2007) Sphingobium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57(11):2613–2617

    CAS  Article  PubMed  Google Scholar 

  36. Young CC, Arun AB, Kämpfer P, Busse HJ, Lai WA, Chen WM et al (2008) Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 58(8):1801–1806

    CAS  Article  PubMed  Google Scholar 

  37. Zhang J, Lang ZF, Zheng JW, Hang BJ, Duan XQ, He J, Li SP (2012) Sphingobium jiangsuense sp. nov., a 3-phenoxybenzoic acid-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 62(4):800–805

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tae-Hoo Yi.

Additional information

The NCBI GenBank accession number for the 16S rRNA gene sequence of strain THG-SQA7T is KM598233.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10482_2015_562_MOESM1_ESM.pdf

Supplementary material 1 (PDF 96 kb). Supplementary Fig. S1. Maximum-likelihood tree based on 16S rRNA gene sequence analysis showing phylogenetic relationships between strain THG-SQA7T and related members of the genus Sphingobium. Numbers at nodes (over 50 % are shown) represent percentages of bootstrap support based on a maximum-likelihood analysis of 1000 resampled datasets

10482_2015_562_MOESM2_ESM.pdf

Supplementary material 2 (PDF 68 kb). Supplementary Fig. S2. Transmission electron micrograph of cells of THG-SQA7T. The detection was performed after negative staining with uranyl acetate. Bar, 0.5 µm

10482_2015_562_MOESM3_ESM.pdf

Supplementary material 3 (PDF 97 kb). Supplementary Fig. S3. Two-dimensional TLC of polar lipids of THG-SQA7T (a1, a2, a3 and a4) and S. abikonense KCTC 2864T (b). a1 and b: Total lipids detected by spraying with 5 % molybdatophosphoric acid for THG-SQA7T and S. abikonense KCTC 2864T, respectively; a2: aminolipids revealed by 0.2 % ninhydrin; a3: phospholipids detected by spraying with molybdenum blue; a4: glycolipids detected by spraying with α-naphthol-sulphuric acid. Abbreviations: phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PME), phosphatidyldimethylethanolamine (PDE), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), sphingoglycolipid (SGL), unidentified lipids (L1–4), unidentified phospholipid (PL) and unidentified aminolipid (AL)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, J., Singh, H., Yang, JE. et al. Sphingobium soli sp. nov. isolated from rhizosphere soil of a rose. Antonie van Leeuwenhoek 108, 1091–1097 (2015). https://doi.org/10.1007/s10482-015-0562-8

Download citation

Keywords

  • Sphingobium soli
  • Ubiquinone-10
  • 16S rRNA