Antonie van Leeuwenhoek

, Volume 108, Issue 4, pp 919–931 | Cite as

Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov.

  • Maria C. Guamán-Burneo
  • Kelly J. Dussán
  • Raquel M. Cadete
  • Monaliza A. M. Cheab
  • Patricia Portero
  • Enrique J. Carvajal-Barriga
  • Sílvio S. da Silva
  • Carlos A. Rosa
Original Paper

Abstract

This study evaluated d-xylose-assimilating yeasts that are associated with rotting wood from the Galápagos Archipelago, Ecuador, for xylitol production from hemicellulose hydrolysates. A total of 140 yeast strains were isolated. Yeasts related to the clades Yamadazyma, Kazachstania, Kurtzmaniella, Lodderomyces, Metschnikowia and Saturnispora were predominant. In culture assays using sugarcane bagasse hemicellulose hydrolysate, Candida tropicalis CLQCA-24SC-125 showed the highest xylitol production, yield and productivity (27.1 g L−1 xylitol, Yp/sxyl = 0.67 g g−1, Qp = 0.38 g L−1. A new species of Cyberlindnera, strain CLQCA-24SC-025, was responsible for the second highest xylitol production (24 g L−1, Yp/sxyl = 0.64 g g−1, Qp = 0.33 g L−1 h−1) on sugarcane hydrolysate. The new xylitol-producing species Cyberlindneragalapagoensis f.a., sp. nov., is proposed to accommodate the strain CLQCA-24SC-025T (=UFMG-CM-Y517T; CBS 13997T). The MycoBank number is MB 812171.

Keywords

Yeasts Xylitol Galápagos archipelago d-xylose conversion Sugarcane bagasse hemicellulose hydrolysate Cyberlindneragalapagoensis sp. nov. 

References

  1. Arrizon J, Mateos JC, Sandoval G, Aguilar B, Solis J, Aguilar MG (2012) Bioethanol and xylitol production from different lignocellulosic hydrolysates by sequential fermentation. J Food Process Eng 35:437–454CrossRefGoogle Scholar
  2. Arruda PV, Rodrigues RCLB, da Silva DDV, Felipe MGA (2011) Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate. Biodegradation 22:815–822CrossRefPubMedGoogle Scholar
  3. Barbosa MFS, Medeiros MB, Mancilha IM, Schneider H, Lee H (1988) Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 3:241–251CrossRefGoogle Scholar
  4. Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292CrossRefGoogle Scholar
  5. Cadete RM, Melo MA, Dussán KJ, Rodrigues RCLB, da Silva SS, Zilli JE, Vital MJS, Gomes FCO, Lachance MA, Rosa CA (2012) Diversity and physiological characterization of d-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest. PLoS One 7:e43135PubMedCentralCrossRefPubMedGoogle Scholar
  6. Chen X, Jiang ZH, Chen S, Wensheng Q (2010) Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci 6:834–844PubMedCentralCrossRefPubMedGoogle Scholar
  7. Converti A, Perego P, Domínguez JM (1999) Xylitol production from hardwood hemicellulose hydrolysates by Pachysolen tannophilus, Debaryomyces hansenii, and Candida guilliermondii. Appl Biochem Biotechnol 82:141–151CrossRefGoogle Scholar
  8. da Silva SS, Afschar AS (1994) Microbial production of xylitol from d-xylose using Candida tropicalis. Bioprocess Eng 11:129–134CrossRefGoogle Scholar
  9. da Silva SS, Chandel AK (2012) d-xylitol: fermentative production, application and commercialization. Springer, HeidelbergCrossRefGoogle Scholar
  10. da Silva DDV, Felipe MGA (2006) Effect of glucose:xylose ratio on xylose redutase and xylitol dehydrogenase activities from Candida guilliermondii in sugarcane bagasse hydrolysate. J Chem Technol Biotechnol 81:1294–1300CrossRefGoogle Scholar
  11. da Silva SS, Vitolo M, Pessoa A Jr, Felipe MGA (1996) Xylose reductase and xylitol dehydrogenase activities of d-xylose-xylitol-fermenting Candida guilliermondii. J Basic Microbiol 36:187–191CrossRefGoogle Scholar
  12. de Barros Lopes M, Soden A, Henschke PA, Langridge P (1996) PCR differentiation of commercial yeast strains using intron splice site primers. Appl Environ Microbiol 62:4514–4520Google Scholar
  13. de Mello MV (2009) Seleção de leveduras para bioconversão de d-xilose em xilitol. Master Dissertation, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloGoogle Scholar
  14. Galápagos National Park, Ecuador (2012) Ministerio del Ambiente. Galápagos, 1st edn. http://www.galapagospark.org/nophprg.php?page=parque_nacional_introducidas_plantas_santa_cruz. Accessed 14 Sep 2012
  15. Gárdonyi M, Österberg M, Rodrigues C, Spencer-Martins I, Hahn-Hägerdal B (2003) High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res 3:45–52PubMedGoogle Scholar
  16. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800CrossRefPubMedGoogle Scholar
  17. Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101:1096–1104CrossRefPubMedGoogle Scholar
  18. Kamat S, Khot M, Zinjarde S, Ravikumar A, Gade WN (2013) Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands. Bioresour Technol 135:246–253CrossRefPubMedGoogle Scholar
  19. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, 5th edn. Elsevier, AmsterdamGoogle Scholar
  20. Lachance MA (2012) In defense of yeast sexual life cycles: the forma asexualis—an informal proposal. Yeast Newslett 61:24–25Google Scholar
  21. Lachance MA, Bowles JM, Starmer WT, Barker JSF (1999) Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. Can J Microbiol 45:172–177CrossRefPubMedGoogle Scholar
  22. Lachance MA, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP (2011) Candida Berkhout (1923). In: Kurtzman CP, Fell J, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 987–1278CrossRefGoogle Scholar
  23. Leandro MJ, Gonçalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395:543–549PubMedCentralCrossRefPubMedGoogle Scholar
  24. Leathers TD, Gupta SC (1997) Xylitol and riboflavin accumulation in xylose-grown cultures of Pichia guilliermondii. Appl Microbiol Biotechnol 47:58–61CrossRefGoogle Scholar
  25. Mohamad NL, Kamal NL, Mustapa SM, Mokhtar MN (2015) Xylitol biological production: a review of recent studies. Food Ver Int 31:74–89CrossRefGoogle Scholar
  26. Morais CG, Cadete RM, Uetanabaro AP, Rosa LH, Lachance MA, Rosa CA (2013a) d-xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic rainforest habitats in Brazil. Fungal Genet Biol 60:19–28CrossRefPubMedGoogle Scholar
  27. Morais CG, Lara CA, Marques S, Fonseca C, Lachance MA, Rosa CA (2013b) Sugiyamaella xylanicola sp. nov., a xylan-degrading yeast species isolated from rotting wood. Int J Syst Evol Microbiol 6:2356–2360CrossRefGoogle Scholar
  28. Mussatto SI, Roberto IC (2002) Xilitol: edulcorante com efeitos benéficos para a saúde humana. Braz J Pharm Sci 38:401–413Google Scholar
  29. Neill DA, Jorgensen PM (1995) Catálogo de las plantas vasculares del Ecuador, St. Louis: Missouri Botanical Garden. http://www.mobot.org/mobot/research/ecuador/vegetationsp.shtml. Accessed 15 Dec 2012
  30. Rao RS, Jyothi CP, Prakasham RS, Sarma PN, Rao LV (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol 97:1974–1978CrossRefPubMedGoogle Scholar
  31. Rao RS, Bhadra B, Shivaji S (2008) Isolation and characterization of ethanol-producing yeasts from fruits and tree barks. Lett Appl Microbiol 47:19–24CrossRefPubMedGoogle Scholar
  32. Rosa CA, Lachance MA, Teixeira LCRS, Pimenta RS, Morais PB (2007) Metschnikowia cerradonensis sp. nov., a yeast species isolated from ephemeral flowers and their nitidulid beetles in Brazil. Int J Syst Evol Microbiol 57:161–165CrossRefPubMedGoogle Scholar
  33. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRefPubMedGoogle Scholar
  34. Sampaio FC, Chaves-Alves VM, Converti A, Passos FML, Coelho JLC (2008) Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Bioresour Technol 99:502–508CrossRefPubMedGoogle Scholar
  35. Schneder AS, Schettler A, Markowski A, Luettig B, Momma M, Seipt C, Hadem J, Wilhelmi M (2014) Assessment of xylitol serum levels during the course of parenteral nutrition including xylitol in intensive care patients: a case control study. Clin Nutr 33:483–488CrossRefGoogle Scholar
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralCrossRefPubMedGoogle Scholar
  37. Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86:1–14CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maria C. Guamán-Burneo
    • 1
    • 2
  • Kelly J. Dussán
    • 3
  • Raquel M. Cadete
    • 1
  • Monaliza A. M. Cheab
    • 1
  • Patricia Portero
    • 2
  • Enrique J. Carvajal-Barriga
    • 2
  • Sílvio S. da Silva
    • 3
  • Carlos A. Rosa
    • 1
  1. 1.Departamento de Microbiologia, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Centro Neotropical para Investigación de la BiomasaPontificia Universidad Católica del EcuadorQuitoEcuador
  3. 3.Departamento de Biotecnologia, Escola de Engenharia de LorenaUniversidade de São PauloSão PauloBrazil

Personalised recommendations