Skip to main content
Log in

Two-component system YvqEC-dependent bacterial resistance against vancomycin in Bacillus thuringiensis

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

YvqEC is one of the two-component signal transduction systems that may respond to cell envelope stress and enable cells to adjust multiple cellular functions. It consists of a histidine kinase YvqE and a response regulator YvqC. In this study, we separately constructed a single gene mutant ΔyvqE and a double gene mutant ΔyvqEC in Bacillus thuringiensis BMB171 through a homing endonucleases I-SceI mediated markerless gene deletion method. We found that the deletion of either yvqE or yvqEC weakened the resistance of B. thuringiensis against vancomycin. We also identified nine operons that may be involved in the cellular metabolism regulated by YvqC. This study not only enriches our understanding of bacterial resistance mechanisms against vancomycin, but also helps investigate the functions of YvqEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almarza O, Núñez D, Toledo H (2015) The DNA-binding protein HU has a regulatory role in the acid stress response mechanism in Helicobacter pylori. Helicobacter 20:29–40

    Article  CAS  PubMed  Google Scholar 

  • Arias CA, Panesso D, McGrath DM, Qin X, Mojica MF, Miller C, Diaz L, Tran TT, Rincon S, Barbu EM, Reyes J, Roh JH, Lobos E, Sodergren E, Pasqualini R, Arap W, Quinn JP, Shamoo Y, Murray BE, Weinstock GM (2011) Genetic basis for in vivo daptomycin resistance in Enterococci. N Engl J Med 365:892–900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bourret RB, Silversmith RE (2010) Two-component signal transduction. Curr Opin Microbiol 13:113–115

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiu KC, Lin CJ, Shaw GC (2014) Transcriptional regulation of the l-lactate permease gene lutP by the LutR repressor of Bacillus subtilis RO-NN-1. Microbiology 160:2178–2189

    Article  CAS  PubMed  Google Scholar 

  • Christodoulou E, Rypniewski WR, Vorgias CR (2003) High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability. Extremophiles 7:111–122

    CAS  PubMed  Google Scholar 

  • Eldholm V, Gutt B, Johnsborg O, Brückner R, Maurer P, Hakenbeck R, Mascher T, Håvarstein LS (2010) The pneumococcal cell envelope stress-sensing system LiaFSR is activated by murein hydrolases and lipid II-interacting antibiotics. J Bacteriol 192:1761–1773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Endo T, Sasaki N, Tanaka I, Nakata M (2002) Compact form of DNA induced by DNA-binding protein HU. Biochem Biophys Res Commun 290:546–551

    Article  CAS  PubMed  Google Scholar 

  • Filippova EV, Kuhn ML, Osipiuk J, Kiryukhina O, Joachimiak A, Ballicora MA, Anderson WF (2015) A novel polyamine allosteric site of SpeG from Vibrio cholerae is revealed by its dodecameric structure. J Mol Biol 27:1316–1334

    Article  Google Scholar 

  • Fritsch F, Mauder N, Williams T, Weiser J, Oberle M, Beier D (2011) The cell envelope stress response mediated by the LiaFSRLm three-component system of Listeria monocytogenes is controlled via the phosphatase activity of the bifunctional histidine kinase LiaSLm. Microbiology 157:373–386

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Stock AM (2009) Biological Insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hachmann AB, Angert ER, Helmann JD (2009) Genetic analysis of factors affecting susceptibility of Bacillus subtilis to daptomycin. Antimicrob Agents Ch 53:1598–1609

    Article  CAS  Google Scholar 

  • Hancoc L, Perego M (2002) Two-component signal transduction in Enterococcus faecalis. J Bacteriol 184:5819–5825

    Article  Google Scholar 

  • He J, Shao X, Zheng H, Li M, Wang J, Zhang Q, Li L, Liu Z, Sun M, Wang S, Yu Z (2010) Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. J Bacteriol 192:4074–4075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hollenbeck BL, Rice LB (2012) Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3:421–433

    Article  PubMed Central  PubMed  Google Scholar 

  • Janes BK, Stibitz S (2006) Routine markerless gene replacement in Bacillus anthracis. Infect Immun 74:1949–1953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson JM, Sanford BL, Strom AM, Tadayon SN, Lehman BP, Zirbes AM, Bhattacharyya S, Musier-Forsyth K, Hati S (2013) Multiple pathways promote dynamical coupling between catalytic domains in Escherichia coli prolyl-tRNA synthetase. Biochemistry 52:4399–4412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in gram-positive bacteria. FEMS Microbiol Rev 32:107–146

    Article  CAS  PubMed  Google Scholar 

  • Jordan S, Junker JA, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jordan S, Rietkötter E, Strauch MA, Kalamorz F, Butcher BG, Helmann JD, Mascher T (2007) LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis. Microbiology 153:2530–2540

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Kuwahara-Arai K, Hiramatsu K (2000) Identification of the up- and down-regulated genes in vancomycin-resistant Staphylococcus aureus strains Mu3 and Mu50 by cDNA differential hybridization method. Biochem Biophys Res Commun 269:485–490

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49:807–821

    Article  CAS  PubMed  Google Scholar 

  • Kwun MJ, Novotna G, Hesketh AR, Hill L, Hong H (2013) In vivo studies suggest that induction of VanS-dependent vancomycin resistance requires binding of the drug to d-Ala-d-Ala termini in the peptidoglycan cell wall. Antimicrob Agents Ch 57:4470–4480

    Article  CAS  Google Scholar 

  • Li L, Shao Z, Yu Z (2000a) Transformation of Bacillus thuringiensis recipient BMB171 by electroporation. Wei Sheng Wu Xue Tong Bao 27:331–334 (In Chinese)

    CAS  Google Scholar 

  • Li L, Yang C, Liu Z, Li F, Yu Z (2000b) Screening of acrystalliferous mutants from Bacillus thuringiensis and their transformation properties. Wei Sheng Wu Xue Bao 40:85–90 (In Chinese)

    CAS  PubMed  Google Scholar 

  • Martínez B, Zomer AL, Rodríguez A, Kok J, Kuipers OP (2007) Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the Lactococcal two-component system CesSR. Mol Microbiol 64:473–486

    Article  PubMed  Google Scholar 

  • Mascher T (2006) Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett 264:133–144

    Article  CAS  PubMed  Google Scholar 

  • Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD (2003) Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 50:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Mascher T, Zimmer SL, Smith TA, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Ch 48:2888–2896

    Article  CAS  Google Scholar 

  • Maughan H, Galeano B, Nicholson WL (2004) Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis: global effects on growth, competence, sporulation, and germination. J Bacteriol 186:2481–2486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moeller R, Vlašić I, Reitz G, Nicholson WL (2012) Role of altered rpoB alleles in Bacillus subtilis sporulation and spore resistance to heat, hydrogen peroxide, formaldehyde, and glutaraldehyde. Arch Microbiol 194:759–767

    Article  CAS  PubMed  Google Scholar 

  • Su J, Bao P, Bai T, Deng L, Wu H, Liu F, He J (2013) CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. PLoS One 8:e60573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su J, Deng L, Huang L, Guo S, Liu F, He J (2014) Catalytic oxidation of manganese (II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide. Water Res 56:304–313

    Article  CAS  PubMed  Google Scholar 

  • Suntharalingam P, Senadheera MD, Mair RW, Lévesque CM, Cvitkovitch DG (2009) The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans. J Bacteriol 191:2973–2984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szurmant H, Hoch JA (2010) Interaction fidelity in two-component signaling. Curr Opin Microbiol 13:190–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Mei H, Qian H, Tang Q, Liu X, Yu Z, He J (2013a) Expression profile and regulation of spore and parasporal crystal formation-associated genes in Bacillus thuringiensis. J Proteome Res 12:5487–5501

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Mei H, Zheng C, Qian H, Cui C, Fu Y, Su J, Liu Z, Yu Z, He J (2013b) The metabolic regulation of sporulation and parasporal crystal formation in Bacillus thuringiensis revealed by transcriptomics and proteomics. Mol Cell Proteomics 12:1363–1376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wecke T, Zühlke D, Mäder U, Jordan S, Voigt B, Pelzer S, Labischinski H, Homuth G, Hecker M, Mascher T (2009) Daptomycin versus Friulimicin B: in-depth profiling of Bacillus subtilis cell envelope stress responses. Antimicrob Agents Ch 53:1619–1623

    Article  CAS  Google Scholar 

  • Wolf D, Kalamorz F, Wecke T, Juszczak A, Mäder U, Homuth G, Jordan S, Kirstein J, Hoppert M, Voigt B, Hecker M, Mascher T (2010) In-depth profiling of the liaR response of Bacillus subtilis. J Bacteriol 192:4680–4693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 31270105) and the National High-tech R&D Program of China (863 Program, Grant 2011AA10A205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Hu, Y., Fan, Q. et al. Two-component system YvqEC-dependent bacterial resistance against vancomycin in Bacillus thuringiensis . Antonie van Leeuwenhoek 108, 365–376 (2015). https://doi.org/10.1007/s10482-015-0489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0489-0

Keywords

Navigation