Antonie van Leeuwenhoek

, Volume 108, Issue 1, pp 85–95 | Cite as

Fungi associated with black mould on baobab trees in southern Africa

  • Elsie M. CruywagenEmail author
  • Pedro W. Crous
  • Jolanda Roux
  • Bernard Slippers
  • Michael J. Wingfield
Original Paper


There have been numerous reports in the scientific and popular literature suggesting that African baobab (Adansonia digitata) trees are dying, with symptoms including a black mould on their bark. The aim of this study was to determine the identity of the fungi causing this black mould and to consider whether they might be affecting the health of trees. The fungi were identified by sequencing directly from mycelium on the infected tissue as well as from cultures on agar. Sequence data for the ITS region of the rDNA resulted in the identification of four fungi including Aureobasidium pullulans, Toxicocladosporium irritans and a new species of Rachicladosporium described here as Rachicladosporium africanum. A single isolate of an unknown Cladosporium sp. was also found. These fungi, referred to here as black mould, are not true sooty mould fungi and they were shown to penetrate below the bark of infected tissue, causing a distinct host reaction. Although infections can lead to dieback of small twigs on severely infected branches, the mould was not found to kill trees.


Adansonia Aureobasidium Rachicladosporium Sooty mould 



We thank members of the Tree Protection Co-operative Programme (TPCP), the NRF-DST Centre of Excellence in Tree Health Biotechnology (CTHB), and the University of Pretoria, South Africa for the financial support that made this study possible. We also thank Dr. Sarah Venter for help in locating suitable trees for sampling in the Venda area and Dr. Martin Coetzee and Andrés de Errasti for help with sampling.


  1. Alberts AH (2005) Threatening baobab disease in Nyae Nyae conservancy. Khaudum National Park, TsumkweGoogle Scholar
  2. Anonymous (1991) Africa’s favourite tree falls ill. New Sci 31:10Google Scholar
  3. Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72:1–401PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cheewangkoon R, Groenewald J, Summerell B, Hyde K, To-Anun C, Crous P (2009) Myrtaceae, a cache of fungal biodiversity. Persoonia 23:55–85PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chomnunti P, Hongsanan S, Aguirre-Hudson B et al (2014) The sooty moulds. Fungal Divers 66:1–36CrossRefGoogle Scholar
  6. Connell L, Staudigel H (2013) Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biology 2:798–809PubMedCentralPubMedCrossRefGoogle Scholar
  7. Crous PW, Braun U, Schubert K, Groenewald JZ (2007) Delimiting Cladosporium from morphologically similar genera. Stud Mycol 58:33–56PubMedCentralPubMedCrossRefGoogle Scholar
  8. Crous P, Schoch C, Hyde K, Wood A, Gueidan C, De Hoog G, Groenewald J (2009) Phylogenetic lineages in the Capnodiales. Stud Mycol 64:17–47PubMedCentralPubMedCrossRefGoogle Scholar
  9. Crous P, Groenewald J, Shivas R et al (2011) Fungal Planet description sheets: 69–91. Persoonia 26:108–156PubMedCentralPubMedCrossRefGoogle Scholar
  10. Crous P, Wingfield MJ, Guarro J et al (2013) Fungal Planet description sheets: 154–213. Persoonia 31:188–295PubMedCentralPubMedCrossRefGoogle Scholar
  11. Crous P, Wingfield M, Schumacher R et al (2014) Fungal Planet description sheets: 281–319. Persoonia 33:212–289PubMedCentralPubMedCrossRefGoogle Scholar
  12. Darriba D, Taboada G, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedCrossRefGoogle Scholar
  13. Egidi E, de Hoog G, Isola D et al (2014) Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fungal Divers 65:127–165CrossRefGoogle Scholar
  14. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) v.3.6. Distributed by the author, Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  15. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  16. Gueidan C, Ruibal Villaseñor C, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gueidan C, Ruibal Villaseñor C, de Hoog GS, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996PubMedCrossRefGoogle Scholar
  18. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  19. Guy GL (1971) The Baobabs: Adansonia spp. (Bombacaceae). J Bot Soc S Afr 57:30–37Google Scholar
  20. Hughes SJ (1976) Sooty Moulds. Mycologia 68:693–820CrossRefGoogle Scholar
  21. Mesquita N, Portugal A, Videira S, Rodríguez-Echeverría S, Bandeira A, Santos M, Freitas H (2009) Fungal diversity in ancient documents. A case study on the Archive of the University of Coimbra. Int Biodeterior Biodegrad 63:626–629CrossRefGoogle Scholar
  22. Mirzwa-Mróz E, Winska-Krysiak M (2011) Diversity of sooty blotch fungi in Poland. Acta Sci Pol Hortorum Cultus 10:191–200Google Scholar
  23. Möller E, Bahnweg G, Sandermann H, Geiger H (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20:6115PubMedCentralPubMedCrossRefGoogle Scholar
  24. Piearce GD, Calvert GM, Sharp C, Shaw P (1994) Sooty baobabs—disease of drought?. Forest Research Centre, HarareGoogle Scholar
  25. Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute, KewGoogle Scholar
  26. Ruibal C, Gueidan C, Selbmann L et al (2009) Phylogeny of rock-inhabiting fungi related to dothideomycetes. Stud Mycol 64:123–133PubMedCentralPubMedCrossRefGoogle Scholar
  27. Sharp C (1993) Sooty baobabs in Zimbabwe. Hartebeest 25:7–14Google Scholar
  28. Sherwood M, Carroll G (1974) Fungal succession on needles and young twigs of old-growth Douglas fir. Mycologia 66:499–506CrossRefGoogle Scholar
  29. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis AM, Gelfard DH, Snindky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322CrossRefGoogle Scholar
  30. Wickens GE, Lowe P (2008) The baobabs: pachycauls of Africa, Madagascar and Australia. Springer, BerlinCrossRefGoogle Scholar
  31. Yurlova N, De Hoog G, Van den Ende A (1999) Taxonomy of Aureobasidium and allied genera. Stud Mycol 43:63–69Google Scholar
  32. Zalar P, Gostinčar C, De Hoog G, Uršič V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38PubMedCentralPubMedCrossRefGoogle Scholar
  33. Zhang E, Tanaka T, Tajima M, Tsuboi R, Nishikawa A, Sugita T (2011) Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microb Immunol 55:625–632CrossRefGoogle Scholar
  34. Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Res 104:1421–1426CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB), Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  2. 2.CBS-KNAW Fungal Biodiversity CentreUtrechtThe Netherlands
  3. 3.Department of Genetics, CTHB, FABIUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations