Actinomadura amylolytica sp. nov. and Actinomadura cellulosilytica sp. nov., isolated from geothermally heated soil

Abstract

Two aerobic, Gram-positive actinomycetes, designated YIM 77502T and YIM 77510T, were isolated from geothermally heated soil of Tengchong county, Yunnan province, south-west China. The taxonomic position of strains YIM 77502T and YIM 77510T were investigated by a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains YIM 77502T and YIM 77510T belong to the genus Actinomadura. Both strains form extensively-branched substrate and aerial mycelia which differentiated into short spore chains. The cell wall of the two strains contained meso-diaminopimelic acid, while the whole-cell sugars detected were glucose, madurose, mannose and rhamnose. The polar lipid profile of strain YIM 77502T was found to consist of diphosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylinositol, two unidentified phospholipids and an unidentified polar lipid, while strain YIM 77510T consisted of diphosphatidylglycerol, phosphatidylinositol mannoside and phosphatidylinositol. The respiratory quinones of strains YIM 77502T and YIM 77510T were MK-9(H6) and MK-9(H8). The major fatty acids (>10 %) of strain YIM 77502T were C17:0, iso-C16:0, C17:010-methyl and iso-C18:0, and those of strain YIM 77510T were iso-C16:0, C17:010-methyl and iso-C18:0. The G+C contents of strains YIM 77502T and YIM 77510T were determined to be 71.3 and 70.2 mol%, respectively. The DNA–DNA hybridization values of strains YIM 77502T, YIM 77510T and their closest phylogenetic neighbours Actinomadura echinospora BCRC 12547T and Actinomadura umbrina KCTC 9343T were less than 70 %. Based on the morphological and physiological properties, and phylogenetic analyses, strains YIM 77502T and YIM 77510T are considered to represent two novel species of the genus Actinomadura, for which the names Actinomadura amylolytica sp. nov. (type strain YIM 77502T = DSM 45822T = CCTCC AA 2012024T) and Actinomadura cellulosilytica sp. nov. (type strain YIM 77510T = DSM 45823T = CCTCC AA 2012023T) are proposed.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Cerny G (1978) Studies on aminopeptidase for the distinction of gram-negative from gram-positive bacteria. Appl Microbiol Biotechnol 5:113–122

    CAS  Article  Google Scholar 

  2. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M (2000) DNA-DNA hybridization determined in microwells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102

    CAS  PubMed  Article  Google Scholar 

  3. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470

    CAS  Article  Google Scholar 

  4. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    CAS  PubMed  Article  Google Scholar 

  5. Cook AE, Marilize LR, Meyers PR (2005) Actinomadura napierensis sp. Nov., isolated from soil in South Africa. Int J Syst Evol Microbiol 55:703–706

    CAS  PubMed  Article  Google Scholar 

  6. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  7. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Article  Google Scholar 

  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–790

    Article  Google Scholar 

  9. Fitch WM (1971) To ward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  10. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715

    CAS  PubMed  Article  Google Scholar 

  11. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Microbiol 29:319–322

    CAS  Article  Google Scholar 

  12. Kelly KL (1964) Inter-Society Color Council-National Bureau of Standards Color Name charts illustrated with centroid colors. US Government Printing Office, Washington

    Google Scholar 

  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    CAS  PubMed  Article  Google Scholar 

  14. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Article  Google Scholar 

  15. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704

    CAS  PubMed  Article  Google Scholar 

  16. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loadedion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    CAS  Article  Google Scholar 

  17. Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    CAS  Article  Google Scholar 

  18. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428

    PubMed  Article  Google Scholar 

  19. Locci R (1989) Streptomyces and related genera. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2451–2508

    Google Scholar 

  20. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acidby high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    CAS  Article  Google Scholar 

  21. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95

    CAS  Article  Google Scholar 

  22. Miyadoh S, Miyara T (2001) Family Thermomonosporaceae. In: The Society for Actinomycetes (ed) Identification manual of actinomycetes. Business Center for Academic Societies, Tokyo, pp 281–291

    Google Scholar 

  23. Parte AC (2014) LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Quintana ET, Trujillo ME, Goodfellow M (2003) Actinomadura mexicana sp. nov. and Actinomadura meyerii sp. nov., two novel soil sporoactinomycetes. Syst Appl Microbiol 26:511–517

    CAS  PubMed  Article  Google Scholar 

  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  26. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16

    Google Scholar 

  27. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  28. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Article  Google Scholar 

  29. Staneck JL, Roberts GD (1974) Simplified approached to identification of aerobic actinomycetes by thin-layer chromatography. Appl Mirobiol 28:2731–2739

    Google Scholar 

  30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ (2009) Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59:2025–2032

    CAS  PubMed  Article  Google Scholar 

  32. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Trujillo ME, Goodfellow M (2012) Genus III. Actinomadura Lechevalier and lechevalier 1970, 400AL emend. Kroppenstedt, Stackebrandt and Goodfellow 1990, 156. In: Goodfellow M, Kämpfer P, Busse MJ, Trujillo ME, Suzuki KL, Ludwig W, Whitman WB (eds) Bergey’s Manual of Systematic Bacteriology, vol 5, 2nd edn. Springer, New York, pp 1940–1959

    Google Scholar 

  34. Waksman SA (1967) The actinomycetes: a summary of current knowledge. Ronald Press, New York

    Google Scholar 

  35. Williams ST, Goodfellow M, Alderson G (1989) Genus StreptomycesWaksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Willkins, Baltimore, pp 2453–2492

    Google Scholar 

  36. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu H, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family Oxalobacteraceae isolated from China. Int J Syst Evol Microbiol 55:1149–1153

    CAS  PubMed  Article  Google Scholar 

  37. Zhang Z, Kudo T, Nakajima Y, Wang Y (2001) Clarification of the relationship between the members of the family Thermomonosporaceae on the basis of 16S rDNA, 16S-23S rRNA internal transcribed spacer and 23S rDNA sequences and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:373–383

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Jung-Sook Lee (KCTC) and Dr. Min Tseng (BCRC) for their kind providing reference type strains, and Prof. Aharon Oren (The Hebrew University of Jerusalem, Israel) for his kind help with the Latin etymology for the new species and Dr. Nimaichand Salam (Manipur University, India) for his help to further polishing this manuscript. This research was supported by Key Project of International Cooperation of Ministry of Science & Technology (MOST) (No. 2013DFA31980), Natural Science Foundation of China (No. 31470139) and Yunnan Provincial Natural Science Foundation (2013FA004). W-J Li was also supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen-Jun Li.

Additional information

Jian-Yu Jiao and Lan Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 364 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiao, JY., Liu, L., Zhou, EM. et al. Actinomadura amylolytica sp. nov. and Actinomadura cellulosilytica sp. nov., isolated from geothermally heated soil. Antonie van Leeuwenhoek 108, 75–83 (2015). https://doi.org/10.1007/s10482-015-0465-8

Download citation

Keywords

  • Actinomadura amylolytica sp. nov.
  • Actinomadura cellulosilytica sp. nov.
  • Tengchong
  • Polyphasic taxonomy