Skip to main content

Ornithinibacillus composti sp. nov., isolated from sludge compost and emended description of the genus Ornithinibacillus

Abstract

A Gram-stain positive, aerobic, motile, endospore-forming and rod-shaped bacterium, designated GSS05T, was isolated from a sludge compost sample and was characterized by means of a polyphasic taxonomic approach. Growth was observed to occur with 0–3 % (w/v) NaCl (optimum 1 %), at pH 5.5–10 (optimum pH 7.5) and at 15–50 °C (optimum 37 °C). According to the results of a phylogenetic analysis, strain GSS05T was found to belong to the genus Ornithinibacillus and to be related most closely to the type strains of Ornithinibacillus halotolerans and Ornithinibacillus contaminans (96.5 and 95.1 % 16S rRNA gene sequence similarity, respectively). The peptidoglycan amino acid type was determined to be A4β. The major respiratory quinone was identified as menaquinone-7 (MK-7). The polar lipid profile of strain GSS05T was found to contain a predominance of diphosphatidylglycerol, moderate amounts of phosphatidylglycerol and minor amounts of two unknown phospholipids and two unknown lipids. The G+C content of genomic DNA was determined to be 42.1 mol%. The dominant cellular fatty acids were identified as iso-C15:0 and anteiso-C15:0. The phenotypic, chemotaxonomic, phylogenetic and genotypic data indicated that strain GSS05T represents a novel species of the genus Ornithinibacillus, for which the name Ornithinibacillus composti sp. nov. is proposed. The type strain is GSS05T (=CCTCC AB 2013261T = KCTC 33192T).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Bagheri M, Amoozegar MA, Schumann P, Didari M, Mehrshad M, Sproer C, Sanchez-Porro C, Ventosa A (2013) Ornithinibacillus halophilus sp. nov., a moderately halophilic, gram-stain-positive, endospore-forming bacterium from a hypersaline lake. Int J Syst Evol Microbiol 63:844–848

    Article  CAS  PubMed  Google Scholar 

  • Breznak JA, Costilow RN (1994) Physicochemical factors in growth. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  • Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Philips GB (eds) Mannual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 21–33

    Google Scholar 

  • Felsenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Han L, Yang G, Zhou X, Yang D, Hu P, Lu Q, Zhou S (2013) Bacillus thermocopriae sp. nov., isolated from a compost. Int J Syst Evol Microbiol 63:3024–3029

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer P, Falsen E, Lodders N, Langer S, Busse HJ, Schumann P (2010) Ornithinibacillus contaminans sp. nov., an endospore-forming species. Int J Syst Evol Microbiol 60:2930–2934

    Article  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P, Fritze D, Heyndrickx M, Kämpfer P, Rabinovitch L et al (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Yang G, Ma C, Qin D, Li D, Zhou S (2014) Ornithinibacillus halotolerans sp. nov., isolated from a saline soil. Int J Syst Evol Microbiol 64:1685–1689

    Article  CAS  PubMed  Google Scholar 

  • Mayr R, Busse HJ, Worliczek HL, Ehling-Schulz M, Scherer S (2006) Ornithinibacillus gen. nov., with the species ornithinibacillus bavariensis sp. nov. and ornithimibacillus californiensis sp. nov. Int J Syst Evol Microbiol 56:1383–1389

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid-chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schumann P (2011) Peptidoglycan structure. Methods Microbiol 38:101–129

    Article  CAS  Google Scholar 

  • Shin NR, Whon TW, Kim MS, Roh SW, Jung MJ, Kim YO, Bae JW (2012) Ornithinibacillus scapharcae sp. nov., isolated from a dead ark clam. Antonie Van Leeuwenhoek 101:147–154

    Article  CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P (ed) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Tamaoka J, Katayamafujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high-performance liquid-chromatography. J Appl Bacteriol 54:31–36

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (41201227), the China Postdoctoral Science Foundation Grant (2013M531828), and the Science and Technology Planning Program of Guangdong Province (2012B091100271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shungui Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8294 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Yuan, H., Li, J. et al. Ornithinibacillus composti sp. nov., isolated from sludge compost and emended description of the genus Ornithinibacillus . Antonie van Leeuwenhoek 107, 813–819 (2015). https://doi.org/10.1007/s10482-014-0374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0374-2

Keywords

  • Ornithinibacillus composti sp. nov.
  • Polyphasic taxonomy
  • Compost
  • A4β type peptidoglycan