Skip to main content

Rhizobium capsici sp. nov., isolated from root tumor of a green bell pepper (Capsicum annuum var. grossum) plant

Abstract

A novel, Gram-staining-negative, rod-shaped, aerobic and motile bacterium, designated strain CC-SKC2T, was isolated from the root tumor of a green bell pepper (Capsicum annuum var. grossum) plant in Taiwan. Cells were positive for oxidase and catalase activities and exhibited growth at 25–37 °C, pH 4.0–9.0 and tolerated NaCl concentrations up to 4.0 % (w/v). Strain CC-SKC2T is able to trigger nodulation in soybean (Glycine max Merr.), but not in Capsicum annuum var. grossum, red bean (Vigna angularis), sesbania (Sesbania roxburghii Merr.) or alfalfa (Medicago varia Martin.). The novel strain shared highest 16S rRNA gene sequence similarity to Rhizobium rhizoryzae KCTC 23652T and Rhizobium straminoryzae CC-LY845T (both 97.5 %) followed by Rhizobium lemnae L6-16T (97.3 %), Rhizobium pseudoryzae KCTC 23294T (97.1 %), and Rhizobium paknamense NBRC 109338T (97.0 %), whereas other Rhizobium species shared <96.7 % similarity. The DNA–DNA relatedness values of strain CC-SKC2T with R. rhizoryzae KCTC 23652T, R. pseudoryzae KCTC 23294T and R. paknamense NBRC 109338T were 11.4, 17.2 and 17.0 %, respectively (reciprocal values were 11.1, 28.3 and 24.0 %, respectively). Phylogenetic analysis based on 16S rRNA, atpD and recA genes revealed a distinct taxonomic position attained by strain CC-SKC2T with respect to other Rhizobium species. The major fatty acids in strain CC-SKC2T were C16:0, C19:0 cyclo ω8c, C14:0 3-OH and/or C16:1 iso I and C18:1 ω7c and/or C18:1 ω6c. The polyamine pattern showed predominance of spermidine and moderate amounts of sym-homospermidine. The predominant quinone system was ubiquinone (Q-10) and the DNA G+C content was 60.5 mol%. On the basis of polyphasic taxonomic evidence presented here, strain CC-SKC2T is proposed to represent a novel species within the genus Rhizobium, for which the name Rhizobium capsici sp. nov. is proposed. The type strain is CC-SKC2T (=BCRC 80699T = JCM 19535T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J (1996) Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52

    Article  CAS  Google Scholar 

  2. Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006

    Article  CAS  PubMed  Google Scholar 

  3. Berge O, Lodhi A, Brandelet G, Santaella C, Roncato MA, Christen R, Heulin T, Achouak W (2009) Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59:367–372

    Article  CAS  PubMed  Google Scholar 

  4. Busse J, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8

    Article  CAS  Google Scholar 

  5. Busse H-J, Bunka S, Hensel A, Lubitz W (1997) Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708

    Article  CAS  Google Scholar 

  6. Collins MD (1985) Isoprenoid quinone analysis in classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287

    Google Scholar 

  7. Conn HJ (1942) Validity of the genus Alcaligenes. J Bacteriol 44:353–360

    PubMed Central  CAS  PubMed  Google Scholar 

  8. de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290

    Article  PubMed  Google Scholar 

  9. Edwards U, Rogall T, Blocker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Farrand SK, van Berkum PB, Oger P (2003) Agrobacteriumis a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687

    Article  CAS  PubMed  Google Scholar 

  11. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  13. Frank B (1889) Über die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 7:332–346 (in German)

    Google Scholar 

  14. García-Fraile P, Rivas R, Willems A, Peix A, Martens M, Martínez-Molina E, Mateos PF, Velázquez E (2007) Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 57:844–848

    Article  PubMed  Google Scholar 

  15. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048

    Article  CAS  PubMed  Google Scholar 

  16. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS, Cooper JE, De Ley DJ, Jarvis BDW, Roslycky EB et al (1991) Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587

    Article  Google Scholar 

  17. Hamana K, Sakamoto A, Tachiyanagi S, Terauchi E, Takeuchi M (2003) Polyamine profiles of some members of the alpha subclass of the class Proteobacteria: polyamine analysis of twenty recently described genera. Microbiol Cult Collect 19:13–21

    Google Scholar 

  18. Hardy R, Burns RC, Holsten RD (1973) Application of the acetylene–ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  19. Heiner CR, Hunkapiller LK, Chen SM, Glass JI, Chen EY (1998) Sequencing multimegabase-template DNA using BigDye terminator chemistry. Genome Res 8:557–561

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov.: a selenite-reducing α-Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460

    Article  CAS  PubMed  Google Scholar 

  21. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  22. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  23. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  24. Kittiwongwattana C, Thawai C (2013) Rhizobium paknamense sp. nov., isolated from lesser duckweeds (Lemna aequinoctialis). Int J Syst Evol Microbiol 63:3823–3828

    Article  CAS  PubMed  Google Scholar 

  25. Koch B, Evans HJ (1966) Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol 41:1748–1750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  27. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993

    CAS  PubMed  Google Scholar 

  28. Lin S-Y, Hus Y-H, Liu Y-C, Hung M-H, Hameed A, Lai W-A, Yen W-S, Young C-C (2014) Rhizobium straminoryzae sp. nov., isolated from the surface of rice straw. Int J Syst Evol Microbiol 64:2962–2968

    Article  CAS  PubMed  Google Scholar 

  29. Lindström K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39:365–367

    Article  Google Scholar 

  30. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acid Res 32:1363–1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  32. Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16:584–586

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  34. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindström K (2014) Phylogeny of the RhizobiumAllorhizobiumAgrobacteriumclade supports the delineation of Neorhizobiumgen. nov. Syst Appl Microbiol 37:208–215

    Article  CAS  PubMed  Google Scholar 

  35. Murray RGE, Doetsch RN, Robinow CF (1994) Determination and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington DC, pp 31–32

    Google Scholar 

  36. Paisley R (1996) MIS whole cell fatty acid analysis by gas chromatography training manual. MIDI, Newark

    Google Scholar 

  37. Peng GX, Yuan QH, Li HX, Zhang W, Tan ZY (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163

    Article  CAS  PubMed  Google Scholar 

  38. Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  CAS  PubMed  Google Scholar 

  39. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Quan ZX, Bae HS, Baek JH, Chen WF, Im WT, Lee ST (2005) Rhizobium daejeonense sp. nov., isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549

    Article  CAS  PubMed  Google Scholar 

  41. Rozahon M, Ismayil N, Hamood B, Erkin R, Abdurahman M, Mamtimin H, Abdukerim M, Lal R, Erkin Rahman E (2014) Rhizobium populi sp. nov., an endophytic bacterium 1 isolated fromPopulus euphratica at the ancient Ugan river. Int J Syst Evol Microbiol 64:3215–3221

    Article  CAS  PubMed  Google Scholar 

  42. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  43. Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11

    Article  CAS  PubMed  Google Scholar 

  44. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  45. Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Höflich G, Hartmann A (1997) Root colonization of different plants by plantgrowth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63:2038–2046

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Segovia L, Piñero D, Palacios R, Martínez-Romero E (1991) Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl Environ Microbiol 57:426–433

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Squartini A, Struffi P, Döring H, Selenska-Pobell S, Tola E, Giacomini A, Vendramin E, Velá zquez E, Mateos PF et al (2002) Rhizobium sullae sp. nov. (formerly ‘Rhizobium hedysari’), the root-nodule microsymbiont of Hedysarum coronarium L. Int J Syst Evol Microbiol 52:1267–1276

    Article  CAS  PubMed  Google Scholar 

  48. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  49. Stolz A, Busse H-J, Kämpfer P (2007) Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576

    Article  CAS  PubMed  Google Scholar 

  50. Sullivan JT, Eardly BD, van Berkum P, Ronson CW (1996) Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Appl Environ Microbiol 62:2818–2825

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Tindall BJ (1990a) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  53. Tindall BJ (1990b) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    Article  CAS  Google Scholar 

  54. Turdahon M, Osman G, Hamdun M, Yusuf K, Abdurehim M, Fang C, Rahman E (2013) Rhizobium tarimense sp. nov., isolated from soil in the ancient Khiyik River. Int J Syst Evol Microbiol 63:2424–2429

    Article  CAS  PubMed  Google Scholar 

  55. Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E (2006) Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637

    Article  CAS  PubMed  Google Scholar 

  56. van Berkum P, Beyene D, Bao G, Campbell TA, Eardly BD (1998) Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48:13–22

    Article  PubMed  Google Scholar 

  57. Vincent JM (1970a) A manual for the practical study of root-nodule bacteria. Blackwell Scientific, Oxford

    Google Scholar 

  58. Vincent JM (1970b) The cultivation, isolation and maintenance of rhizobia. In: Vincent JM (ed) A manual for the practical study of the root-nodule bacteria. Blackwell Scientific, Oxford, pp 1–13

    Google Scholar 

  59. Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martínez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699

    Article  CAS  PubMed  Google Scholar 

  60. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  61. Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239

    Article  CAS  PubMed  Google Scholar 

  62. Xie CH, Yokota A (2004) Phylogenetic analyses of the nitrogen-fixing genus Derxia. J Gen Appl Microbiol 50:129–135

    Article  CAS  PubMed  Google Scholar 

  63. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH et al (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 3:241–250

    Article  Google Scholar 

  64. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H et al (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie, 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola, and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Article  CAS  PubMed  Google Scholar 

  65. Zehr JP, McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a crosssystem comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

  67. Zhang X, Sun L, Ma X, Sui XH, Jiang R (2011) Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. Int J Syst Evol Microbiol 61:2425–2429

    Article  CAS  PubMed  Google Scholar 

  68. Zhang X-X, Tang X, Sheirdil RA, Sun L, Ma X-T (2014) Rhizobium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 64:1373–1377

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Dr. Hans G. Trüper for bacterial nomenclature and Professor Chitti Thawai for kindly providing the type strain Rhizobium paknamense NBRC 109338T. This research work was kindly supported by grants from the Ministry of Science and Technology, the Council of Agriculture, Executive Yuan and in part by the Ministry of Education, Taiwan under the ATU plan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chiu-Chung Young.

Additional information

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA, atpD and recA gene sequences of strain CC-SKC2T are HQ113369, KJ863420 and KJ863427, respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1228 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, SY., Hung, MH., Hameed, A. et al. Rhizobium capsici sp. nov., isolated from root tumor of a green bell pepper (Capsicum annuum var. grossum) plant. Antonie van Leeuwenhoek 107, 773–784 (2015). https://doi.org/10.1007/s10482-014-0371-5

Download citation

Keywords

  • Root tumors
  • Capsicum annuum var. grossum
  • Legumes
  • Housekeeping gene
  • Rhizobium capsici sp. nov