Skip to main content
Log in

Chryseobacterium rhizoplanae sp. nov., isolated from the rhizoplane environment

  • Original Article
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A slightly yellow pigmented strain (JM-534T) isolated from the rhizoplane of a field-grown Zea mays plant was investigated using a polyphasic approach for its taxonomic allocation. Cells of the isolate were observed to be rod-shaped and to stain Gram-negative. Comparative 16S rRNA gene sequence analysis showed that the isolate had the highest sequence similarities to Chryseobacterium lactis (98.9 %), Chryseobacterium joostei and Chryseobacterium indologenes (both 98.7 %), and Chryseobacterium viscerum (98.6 %). Sequence similarities to all other Chryseobacterium species were 98.5 % or below. The fatty acid analysis of the strain resulted in a Chryseobacterium typical pattern consisting mainly of the fatty acids C15:0 iso, C15:0 iso 2-OH, C17:1 iso ω9c, and C17:0 iso 3-OH. DNA–DNA hybridizations with the type strains of C. lactis, C. joostei, C. viscerum and C. indologenes resulted in values below 70 %. Genomic fingerprinting showed that the isolate was very different to the type strains of these species. Differentiating biochemical and chemotaxonomic properties showed that the isolate JM-534T represents a novel species, for which the name Chryseobacterium rhizoplanae sp. nov. (type strain JM-534T = LMG 28481T = CCM 8544T = CIP 110828T) is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Behrendt U, Ulrich A, Spröer C, Schumann P (2007) Chryseobacterium luteum sp. nov., associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 57:1881–1885

    Article  PubMed  Google Scholar 

  • Behrendt U, Ulrich A, Schumann P (2008) Chryseobacterium gregarium sp. nov., isolated from decaying plant material. Int J Syst Evol Microbiol 58:1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide-sequence of a 16S ribosomal-RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho SH, Lee KS, Shin DS, Han JH, Park KS, Lee CH, Park KH, Kim SB (2010) Four new species of Chryseobacterium from the rhizosphere of coastal sand dune plants, Chryseobacterium elymi sp. nov., Chryseobacterium hagamense sp. nov., Chryseobacterium lathyri sp. nov. and Chryseobacterium rhizosphaerae sp. nov. Syst Appl Microbiol 33:122–127

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (2005) PHYLIP (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Glaeser SP, Galatis H, Martin K, Kämpfer P (2013) Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. Int J Syst Evol Microbiol 63:3487–3493

    Article  CAS  PubMed  Google Scholar 

  • Holmes B, Steigerwalt AG, Nicholson AC (2013) DNA–DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 63:4639–4662

    Article  CAS  PubMed  Google Scholar 

  • Hugo CJ, Segers P, Hoste B, Vancanneyt M, Kersters K (2003) Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53:771–777

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer P (1990) Evaluation of the titertek-enterobac-automated system (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl Bakteriol 273:164–172

    Article  PubMed  Google Scholar 

  • Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  • Kämpfer P, Steiof M, Dott W (1991) Microbiological characterisation of a fuel–oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251

    Article  PubMed  Google Scholar 

  • Kämpfer P, McInroy JA, Glaeser SP (2014) Chryseobacterium zeae sp. nov., Chryseobacterium arachidis sp. nov., and Chryseobacterium geocarposphaerae sp. nov. isolated from the rhizosphere environment. Antonie Van Leeuwenhoek 105:491–500

    Article  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acid Res 32:1363–1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montero-Calasanz MD, Göker M, Rohde M, Spröer C, Schumann P, Busse H-J, Schmid M, Tindall BJ, Klenk HP, Camacho M (2013) Chryseobacterium hispalense sp. nov., a plant growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery and emendation of the species Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 63:4386–4395

    Article  CAS  Google Scholar 

  • Nguyen NL, Kim YJ, Hoarig VA, Yang DC (2013) Chryseobacterium ginsengisoli sp. nov., isolated from the rhizosphere of ginseng and emended description of Chryseobacterium gleum. Int J Syst Evol Microbiol 63:2975–2980

    Article  CAS  PubMed  Google Scholar 

  • Park MS, Jung SR, Lee KH, Lee M-S, Do JO, Kim SB, Bae KS (2006) Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56:433–438

    Article  CAS  PubMed  Google Scholar 

  • Pitcher DG, Saunders NA (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    Article  CAS  Google Scholar 

  • Reichenbach H (1989) The order Cytophagales Leadbetter 1974, 99AL. In: Staley JT, Bryant MP, Pfennig N, Holt JC (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 2011–2073

    Google Scholar 

  • Sang MK, Kim HS, Myung IS, Ryu CM, Kim BS, Kim KD (2013) Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int J Syst Evol Microbiol 63:2835–2840

    Article  CAS  PubMed  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B (1994) New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831

    Article  Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzéby J, Amann R, Schleifer KH et al (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  CAS  PubMed  Google Scholar 

  • Young CC, Kämpfer P, Shen FT, Lai WA, Arun AB (2005) Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55:432–436

    Article  Google Scholar 

  • Ziemke F, Brettar I, Höfle MG (1997) Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat Microb Ecol 13:63–74

    Article  Google Scholar 

  • Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R (1998) Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Gundula Will, Maria Sowinsky, Jan Rodrigues-Fonseca and Anna Baum for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kämpfer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kämpfer, P., McInroy, J.A. & Glaeser, S.P. Chryseobacterium rhizoplanae sp. nov., isolated from the rhizoplane environment. Antonie van Leeuwenhoek 107, 533–538 (2015). https://doi.org/10.1007/s10482-014-0349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0349-3

Keywords

Navigation