Skip to main content

Advertisement

Log in

Pathogenicity and phenotypic analysis of sopB, sopD and pipD virulence factors in Salmonella enterica serovar typhimurium and Salmonella enterica serovar Agona

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Salmonella is an important food-borne pathogen causing disease in humans and animals worldwide. Salmonellosis may be caused by any one of over 2,500 serovars of Salmonella. Nonetheless, Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Agona are the second most prevalent serovars isolated from humans and livestock products respectively. Limited knowledge is available about the virulence mechanisms responsible for diarrheal disease caused by them. To investigate the contribution of sopB, sopD and pipD as virulence factors in intracellular infections and the uniqueness of these bacteria becoming far more prevalent than other serovars, the infection model of Caenorhabditis elegans and phenotypic microarray were used to characterize their mutants. The strains containing the mutation in sopB, sopD and pipD genes were constructed by using latest site-specific group II intron mutagenesis approach to reveal the pathogenicity of the virulence factors. Overall, we observed that the mutations in sopB, sopD and pipD genes of both serovars did not exhibit significant decrease in virulence towards the nematode. This may indicate that these virulence effectors may not be universal virulence factors involved in conserved innate immunity. There are significant phenotypic differences amongst strains carrying sopB, sopD and pipD gene mutations via the analysis of biochemical profiles of the bacteria. Interestingly, mutant strains displayed different susceptibility to chemical stressors from several distinct pharmacological and structural classes when compared to its isogenic parental strains. These metabolic and chemosensitivity assays also revealed multiple roles of Salmonella virulence factors in nutrient metabolism and antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aballay A, Ausubel FM (2001) Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci USA 98:2735–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akimkina T, Yook K, Curnock S, Hodgkin J (2006) Genome characterization, analysis of virulence and transformation of Microbacterium nematophilum, a coryneform pathogen of the nematode Caenorhabditis elegans. FEMS Microbial Lett 264:145–151

    Article  CAS  Google Scholar 

  • Bakowski MA, Cirullis JT, Brown NF, Finlay BB, Brumell JH (2007) SopD acts cooperatively with SopB during Salmonella enterica serovar Typhimurium invasion. Cell Microbiol 9(12):2839–2855

    Article  CAS  PubMed  Google Scholar 

  • Baron S (1996) Medical microbiology. In: Peterson JW (ed) Bacterial pathogenesis, Chapter 7. University of Texas Medical Branch at Galveston, Galveston

  • Bhunia AK (2008) Foodborne microbial pathogens: mechanism and pathogenesis. Springer, New York USA

    Google Scholar 

  • Bopp CA, Brenner FW, Fields PI, Wells JG, Stockbine NA (2003) Escherichia, Shigella, and Salmonella. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH (eds) Manual of clinical microbiology. ASM Press, Washington, pp 654–671

    Google Scholar 

  • Brenner FW, Villar RG, Angula FJ, Tauxe R, Swaminathan B (2000) Guest commentary: Salmonella nomenclature. J Clin Microbiol 38:2465–2467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brouard C, Espie E, Weill FX, Kerouanton A, Brisabois A, Forgue AM, Vaillant V, De Valk H (2007) Two consecutive large outbreaks of Salmonella enterica serotype Agona infections in infants linked to the consumption of powdered infant formula. Pediatr Infect Dis J 26:148–152

    Article  PubMed  Google Scholar 

  • Burton EA, Pendergast AM, Aballay A (2006) The Caenorhabditis elegans ABL-1 tyrosine kinase is required for Shigella flexneri pathogenesis. Appl Environ Microbiol 72(7):5043–5051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chai-Hoon K, Yoke-Kqueen C, Learn-Han L, Jiun-Horng S, Noorzaleha AS (2009) Virulotyping of Salmonella enterica subsp. enterica isolated from indigenous vegetables and poultry meat in Malaysia using multiplex-PCR. Antonie van Leeuwenhoek 96:441–457

    Article  Google Scholar 

  • Chen S, Cui S, McDermott PF, Zhao S, White DG, Paulsen I, Meng J (2007) Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar Typhimurium to fluoroquinolones and others antimicrobials. Antimicrob Agents Chemother 51(2):535–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen F, Poppe C, Liu GR, Li YG, Peng YH, Sanderson KE, Johnston RN, Liu SL (2009) A genome map of Salmonella enterica serovar Agona: numerous insertions and deletions reflecting the evolutionary history of a human pathogen. FEMS Microbial Lett 293:188–195

    Article  CAS  Google Scholar 

  • Clark GM, Kaufmann AF, Gangarosa EJ, Thompson MA (1973) Epidemiology of an international outbreak of Salmonella Agona. The Lancet 1:490–493

    Article  Google Scholar 

  • Crump JA, Griffin PM, Angulo FJ (2002) Bacterial contamination of animal feed and its relationship to human foodborne illness. Clin Infect Dis 35:859–865

    Article  PubMed  Google Scholar 

  • Dhakal BK, Lee W, Kim YR, Choy HE, Ahnn J, Rhee JH (2006) Caenorhabditis elegans as a simple model host for Vibrio vulnificus infection. Biochem Biophys Res Commun 346:751–757

    Article  CAS  PubMed  Google Scholar 

  • Ellermeier JR, Slauch JM (2007) Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 10:24–29

    Article  CAS  PubMed  Google Scholar 

  • Estes KA, Szumowski SC, Troemel ER (2011) Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells. PLoS Pathog 7(9):e1002227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ewbank JJ (2002) Tackling both sides of the host–pathogen equation with Caenorhabditis elegans. Microbes Infect 4:247–256

    Article  PubMed  Google Scholar 

  • Fierer J, Guiney DG (2001) Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J Clin Invest 107(7):775–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galanis E, Lo FWDM, Patrick ME, Binsztein N, Cieslik A, Chalermchikit T, Aidara-Kane A, Ellis A, Angulo FJ, Wegener HC (2006) Web-based surveillance and global Salmonella distribution, 2000–2002. Emerg Infect Dis 12(3):381–388

    Article  PubMed Central  PubMed  Google Scholar 

  • Garsin DA, Sifri CD, Mylonakis E, Qin X, Singh KV, Murray BE, Calderwood SB, Ausubel FM (2001) A simple model host for identifying gram-positive virulence factors. Proc Natl Acad Sci USA 98:10892–10897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong H, Vu G-P, Bai Y, Yang E, Liu F, Lu S (2010) Differential expression of Salmonella type III secretion system factors InvJ, PrgJ, SipC, SipD, SopA and SopB in cultures and in mice. Microbiology 156:116–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Groisman EA (2001) Principle of bacterial pathogenesis. In: Scherer C, Miller SI (eds) Molecular pathogenesis of Salmonellae. Academic Press, Sandiego, pp 265–316

    Google Scholar 

  • Herikstad H, Motarjemi Y, Tauxe RV (2002) Salmonella surveillance: a global survey of public health serotyping. Epidemiol Infect 129(1):1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda T, Yasui C, Hoshino K, Arikawa K, Nishikawa Y (2007) Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella enterica serovar enteritidis. Appl Environ Microbiol 73(20):6404–6409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones MA, Wood MW, Mullan PB, Watson PP, Wallis TS, Edouard EG (1998) Secreted effector proteins of Salmonella Dublin act in concert to induce enteritis. Infect Immun 66(12):5799–5804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karberg M, Guo H, Zhong J, Coon R, Perutla J, Lambowitz AM (2001) Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 19:1162–1167

    Article  CAS  PubMed  Google Scholar 

  • Karosova D, Havlickova H, Sisak F, Rychlik I (2009) Deletion of sodCI and spvBC in Salmonella enterica serovar Enteritidis reduced its virulence to the natural virulence of serovars Agona, Hadar and Infantis for mice but not for chicken early after infection. Vet Microbiol 139:304–309

    Article  Google Scholar 

  • Khare S, Nunes JS, Figueiredo JF, Lawhon SD, Rossetti CA, Gull T, Rice-Ficht AC, Adams LG (2009) Early phase morphological lesions and transcriptional response of bovine ileum infected with Mycobacterium avium subsp. paratuberculosis. Vet Pathol 46:717–728

    Article  CAS  PubMed  Google Scholar 

  • Lawley TD, Chan K, Thompson LJ, Kim CC, Govoni GR, Denise MM (2006) Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2:e11

    Article  PubMed Central  PubMed  Google Scholar 

  • Lemaitre B, Ausubel FM (2008) Animal models for host–pathogen interactions. Curr Opin Microbiol 11:249–250

    Article  PubMed  Google Scholar 

  • Marcus SL, Brumell JH, Pfeifer CG, Finlay BB (2000) Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2:145–156

    Article  CAS  PubMed  Google Scholar 

  • Maria J, Johara MY, Dahlia H, Siti HI (2002) Salmonella serovars isolated in animals and livestock products in Malaysia since 1996–2001. In Proceedings of the 12th FAVA and 14th VAM Congress, Kuala Lumpur

  • McGhee JD (2007) The C. elegans intestine. In: WormBook, The C. elegans Research Community. doi:10.1895/wormbook.1.133.1

  • Merkx-Jacques A, Coors A, Brousseau R, Luke M, Mazza A, Tien YC, Topp E (2013) Evaluating the pathogenic potential of environmental Escherichia coli using the Caenorhabditis elegans infection model. Appl Environ Microbiol 03501–12. doi:10.1128/AEM.03501-12

  • Michael GB, Cardoso M, Schwarz S (2006) Molecular analysis of Salmonella enterica susp. enterica serovar Agona isolated from slaughter pigs. Vet Microbiol 112:43–52

    Article  CAS  PubMed  Google Scholar 

  • Mylonakis E, Aballay A (2005) Worms and flies as genetically tractable animal models to study host–pathogen interactions. Infect Immun 73(7):3833–3841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noorzaleha AS, Gulam R, Zaiton H, Abdul R, Siti HI, Mitsuaki N, Son R (2003) Incidence of Salmonella spp. in raw vegetables in Selangor, Malaysia. Food Control 14:475–479

    Article  Google Scholar 

  • Norris FA, Wilson MP, Wallis TS, Galyov EE (1998) SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA 95:14075–14079

    Article  Google Scholar 

  • Ong SY, Ng FL, Badai SS, Yuryev A, Alam M (2010) Analysis and construction of pathogenicity island regulatory pathways in Salmonella enterica serovar Typhi. J Inteqr Bioinform 7(1):145

    Google Scholar 

  • Popoff MY, Le Minor L (1997) Antigenic formulas of the Salmonella serovars, 7th revision, World Health Organisation Collaborating Centre for Reference and Research on Salmonella, Pasteur Institute, Paris

  • Raffatellu M, Wilson RP, Chessa D, Andrews-Polymenis H, Tran QT, Lawhon S, Khare S, Adams LG, Baumler AJ (2005) SipA, SopA, SopB, SopD and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect Immun 73(1):146–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reis BP, Zhang S, Tsolis RM, Baumler AJ, Adams LG, Santos RL (2003) The attenuated sopB mutant of Salmonella enterica serovar Typhimurium has the same tissue distribution and host chemokine response as the wild type in bovine Peyer’s patches. Vet Microbiol 97:269–277

    Article  CAS  PubMed  Google Scholar 

  • Santos RL, Tsolis RM, Zhang S, Ficht TA, Baumler AJ, Garry Adams L (2001) Salmonella-induced cell death is not required for enteritis in calves. Infect Immun 69:4610–4617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sifri CD, Begun J, Ausubel FM (2005) The worm has turned-microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol 13:119–127

    Article  CAS  PubMed  Google Scholar 

  • Soto SM, Rodríguez I, Rodicio MR, Vila J, Mendoza MC (2006) Detection of virulence determinants in clinical strains of Salmonella enterica serovar Enteritidis and mapping on macrorestriction profiles. J Med Microbiol 55:365–373

    Article  CAS  PubMed  Google Scholar 

  • Stiernagle T (2006) Maintenance of C. elegans. In: WormBook, The C. elegans Research Community. doi:10.1895/wormbook.1.101.1

  • Tan M-W, Ausubel FM (2002) Alternative models in microbial pathogens. Method Microbiol 31:461–475

    Article  Google Scholar 

  • Tartera C, Metcalf ES (1993) Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells. Infect Immun 61:3084–3089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tenor JL, McCormick FM, Ausubel FM, Aballay A (2004) Caenorhabditis elegans-based screen identifies Salmonella virulence factors required for conserved host–pathogen interactions. Curr Biol 14:1018–1024

    Article  CAS  PubMed  Google Scholar 

  • Tsolis RM, Adam LG, Ficht TA, Baumler AJ (1999) Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun 67(9):4879–4885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood MW, Jones MA, Watson PR, Hedges S, Wallis TS, Galyov EE (1998) Identification of a pathogenicity islands required for Salmonella enteropathogenicity. Mol Microbiol 29(3):883–891

    Article  CAS  PubMed  Google Scholar 

  • Wood MW, Jones MA, Watson PR, Siber AM, McCormick BA, Hedges S, Rosqvist R, Wallis TS, Galyov EE (2000) The secreted effector protein of Salmonella Dublin, SopA, is translocated into eukaryotic cells and influences the induction of enteritis. Cell Microbiol 2(4):293–303

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Santos RL, Tsolis RM, Stender S, Hardt WD, Bäumler AJ, Adams LG (2002) The Salmonella enterica serotype Typhimurium effector proteins sipA, sopA, sopB, sopD, and sopE2 act in concert to induce diarrhea in calves. Infect Immun 70(7):3843–3855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Noorzaleha Awang Salleh from Department of Chemistry, Malaysia for sharing the Salmonella isolates and Caenorhabditis Genetic Center which is funded by the NIH National Center for providing the Caenorhabditis elegans and E. coli OP50 strains used in this work. This work was supported by Research University Grant Scheme (04-02-12-2026RU) from the Universiti Putra Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoke-Kqueen Cheah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoo, CH., Sim, JH., Salleh, N.A. et al. Pathogenicity and phenotypic analysis of sopB, sopD and pipD virulence factors in Salmonella enterica serovar typhimurium and Salmonella enterica serovar Agona. Antonie van Leeuwenhoek 107, 23–37 (2015). https://doi.org/10.1007/s10482-014-0300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0300-7

Keywords

Navigation