Antonie van Leeuwenhoek

, Volume 106, Issue 5, pp 993–1009 | Cite as

Comparative analysis of bacterial community-metagenomics in coastal Gulf of Mexico sediment microcosms following exposure to Macondo oil (MC252)

  • Hyunmin Koo
  • Nazia Mojib
  • Robert W. Thacker
  • Asim K. Bej
Original Paper


The indigenous bacterial communities in sediment microcosms from Dauphin Island (DI), Petit Bois Island (PB) and Perdido Pass (PP) of the coastal Gulf of Mexico were compared following treatment with Macondo oil (MC252) using pyrosequencing and culture-based approaches. After quality-based trimming, 28,991 partial 16S rRNA sequence reads were analyzed by rarefaction, confirming that analyses of bacterial communities were saturated with respect to species diversity. Changes in the relative abundances of Proteobacteria, Bacteroidetes and Firmicutes played an important role in structuring bacterial communities in oil-treated sediments. Proteobacteria were dominant in oil-treated samples, whereas Firmicutes and Bacteroidetes were either the second or the third most abundant taxa. Tenericutes, members of which are known for oil biodegradation, were detected shortly after treatment, and continued to increase in DI and PP sediments. Multivariate statistical analyses (ADONIS) revealed significant dissimilarity of bacterial communities between oil-treated and untreated samples and among locations. In addition, a similarity percentage analysis showed the contribution of each species to the contrast between untreated and oil-treated samples. PCR amplification using DNA from pure cultures of Exiguobacterium,  Pseudoalteromonas,  Halomonas and Dyadobacter, isolated from oil-treated microcosm sediments, produced amplicons similar to polycyclic aromatic hydrocarbon-degrading genes. In the context of the 2010 Macondo blowout, the results from our study demonstrated that the indigenous bacterial communities in coastal Gulf of Mexico sediment microcosms responded to the MC252 oil with altered community structure and species composition. The rapid proliferation of hydrocarbonoclastic bacteria suggests their involvement in the degradation of the spilt oil in the Gulf of Mexico ecosystem.


Oil spill Qiime Bioinformatics Biodegradative genes PCR Hydrocarbonoclastic bacteria Pyrosequencing 

Supplementary material

10482_2014_268_MOESM1_ESM.pdf (320 kb)
Supplementary material 1 (PDF 320 kb)
10482_2014_268_MOESM2_ESM.pdf (266 kb)
Supplementary material 2 (PDF 267 kb)


  1. Acosta-Martinez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40(11):2762–2770CrossRefGoogle Scholar
  2. Armougom F, Raoult D (2009) Exploring microbial diversity using 16S rRNA high-throughput methods. J Comput Sci Syst Biol 2(1):74–92CrossRefGoogle Scholar
  3. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45(16):6709–6715PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JG, Sideman JG, Struhl K (1987) Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y. Greene PubGoogle Scholar
  5. Azam F, Fenchel T, Field JG, Gray J, Meyer-Reil L, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263CrossRefGoogle Scholar
  6. Baelum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman HY, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14(9):2405–2416PubMedCrossRefGoogle Scholar
  7. Beazley MJ, Martinez RJ, Rajan S, Powell J, Piceno YM, Tom LM, Andersen GL, Hazen TC, Van Nostrand JD, Zhou J, Mortazavi B, Sobecky PA (2012) Microbial community analysis of a coastal salt marsh affected by the Deepwater Horizon oil spill. PloSone 7(7):e41305–e41317CrossRefGoogle Scholar
  8. Brakstad OG, Bonaunet K (2006) Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0–5 °C) and bacterial communities associated with degradation. Biodegradation 17(1):71–82PubMedCrossRefGoogle Scholar
  9. Brakstad OG, Lodeng AG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49(1):94–103PubMedCrossRefGoogle Scholar
  10. Campagna C, Short FT, Polidoro BA, McManus R, Collette BB, Pilcher NJ, Mitcheson YS, Stuart SN, Carpenter KE (2011) Gulf of Mexico oil blowout increases risks to globally threatened species. Bioscience 61(5):393–397CrossRefGoogle Scholar
  11. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267PubMedPubMedCentralCrossRefGoogle Scholar
  12. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chakraborty R, Borglin SE, Dubinsky EA, Andersen GL, Hazen TC (2012) Microbial response to the MC-252 Oil and Corexit 9500 in the Gulf of Mexico. Front Microbiol 3:357–362PubMedPubMedCentralGoogle Scholar
  14. Cho SH, Oh KH (2012) Removal of crude oil by microbial consortium isolated from oil-spilled area in the Korean Western coast. Bull Environ Contam Toxicol 89(3):680–685PubMedCrossRefGoogle Scholar
  15. D’Ippolito S, de Castro RE, Herrera Seitz K (2011) Chemotactic responses to gas oil of Halomonas spp. strains isolated from saline environments in Argentina. Rev Argent Microbiol 43(2):107–110PubMedGoogle Scholar
  16. Deppe U, Richnow HH, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9(6):461–470PubMedCrossRefGoogle Scholar
  17. dos Santos HF, Cury JC, do Carmo, FL, dos Santos AL, Tiedje J, van Elsas JD, Rosado AS, Peixoto RS (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PloS One 6(3):e16943–e16951PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8(1):125–132PubMedPubMedCentralCrossRefGoogle Scholar
  19. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461PubMedCrossRefGoogle Scholar
  20. Edlund A, Jansson JK (2008) Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments. FEMS Microbiol Ecol 65(3):513–525PubMedCrossRefGoogle Scholar
  21. Evans FF, Rosado AS, Sebastián GV, Casella R, Machado PL, Holmström C, Kjelleberg S, Elsas JD, Seldin L (2004) Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol Ecol 49(2):295–305PubMedCrossRefGoogle Scholar
  22. Fenchel T (1988) Marine plankton food chains. Annu Rev Ecol Syst 19:19–38CrossRefGoogle Scholar
  23. Fenchel T (2008) The microbial loop–25 years later. J Exp Mar bio Ecol 366(1):99–103CrossRefGoogle Scholar
  24. Freeman M, Gidiere S, Samuels M (2010) The Oil Spill’s Impact on Gulf Coast Oysters. Environmental Law Reporter: News & Analysis 40(11):11097Google Scholar
  25. Gotelli NJ, Colwell RK (2011) Estimating species richness. Biological diversity: frontiers in measurement and assessment: 39–54Google Scholar
  26. Hasegawa R, Toyama K, Miyanaga K, Tanji Y (2014) Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions. Appl Microbiol Biotechnol 98(4):1853–1861PubMedCrossRefGoogle Scholar
  27. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’Haeseleer P, Holman HY, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208PubMedCrossRefGoogle Scholar
  28. Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microgiol 4(3):173–182CrossRefGoogle Scholar
  29. Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 65(1):251–259PubMedPubMedCentralGoogle Scholar
  30. Hernandez-Raquet G, Budzinski H, Caumette P, Dabert P, Le Menach K, Muyzer G, Duran R (2006) Molecular diversity studies of bacterial communities of oil polluted microbial mats from the Etang de Berre (France). FEMS Microbiol Ecol 58(3):550–562PubMedCrossRefGoogle Scholar
  31. Hicken CE, Linbo TL, Baldwin DH, Willis ML, Myers MS, Holland L, Larsen M, Stekoll MS, Rice SD, Collier TK (2011) Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proc Natl Acad Sci 108(17):7086–7090PubMedPubMedCentralCrossRefGoogle Scholar
  32. Huang JP, Swain AK, Thacker RW, Ravindra R, Andersen DT, Bej AK (2013) Bacterial diversity of the rock-water interface in an East Antarctic freshwater ecosystem, Lake Tawani (P)†. Aquat Biosyst 9(1):4–14PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hughes JB, Hellmann JJ (2005) The application of rarefaction techniques to molecular inventories of microbial diversity. Methods Enzymol 397:292–308PubMedCrossRefGoogle Scholar
  34. Jimenez N, Vinas M, Bayona JM, Albaiges J, Solanas AM (2007) The Prestige oil spill: bacterial community dynamics during a field biostimulation assay. Appl Microbiol Biotechnol 77(4):935–945PubMedCrossRefGoogle Scholar
  35. Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding B, Drozdowska M, Hazen TC, Suflita JM, Morris PJ (2013) Metagenomic analysis and metabolite profiling of deep–sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 4(50):eCollection 2013. doi:10.3389/fmicb.2013.00050 Google Scholar
  36. Koo H, Mojib N, Huang JP, Donahoe RJ, Bej AK Bacterial community shift in the coastal Gulf of Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252) 3 Biotech: 1–14Google Scholar
  37. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77(22):7962–7974PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kryachko Y, Dong X, Sensen CW, Voordouw G (2012) Compositions of microbial communities associated with oil and water in a mesothermic oil field. Antonie Van Leeuwenhoek 101(3):493–506PubMedCrossRefGoogle Scholar
  39. Kvenvolden K, Cooper C (2003) Natural seepage of crude oil into the marine environment. Geo-Mar Lett 23(3–4):140–146CrossRefGoogle Scholar
  40. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82(20):6955–6959PubMedPubMedCentralCrossRefGoogle Scholar
  41. Li H, Zhang Y, Li DS, Xu H, Chen GX, Zhang CG (2009) Comparisons of different hypervariable regions of rrs genes for fingerprinting of microbial communities in paddy soils. Soil Biol Biochem 41(5):954–968CrossRefGoogle Scholar
  42. Liang JB, Chen YQ, Lan CY, Tam NFY, Zan QJ, Huang LN (2007) Recovery of novel bacterial diversity from mangrove sediment. Mar Biol 150(5):739–747CrossRefGoogle Scholar
  43. Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36(18):e120–e131PubMedPubMedCentralCrossRefGoogle Scholar
  44. Liu Z, Liu J (2013) Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. Microbiology Open 2(3):492–504PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lozupone C, Hamady M, Knight R (2006) UniFrac–an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7(1):371–385PubMedPubMedCentralCrossRefGoogle Scholar
  46. Martinez-Murcia AJ, Anton AI, Rodriguez-Valera F (1999) Patterns of sequence variation in two regions of the 16S rRNA multigene family of Escherichia coli. Int J Syst Bacteriol 49:601–610PubMedCrossRefGoogle Scholar
  47. Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HY, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6(9):1715–1727PubMedPubMedCentralCrossRefGoogle Scholar
  48. McKew BA, Coulon F, Yakimov MM, Denaro R, Genovese M, Smith CJ, Osborn AM, Timmis KN, McGenity TJ (2007) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ Microbiol 9(6):1562–1571PubMedCrossRefGoogle Scholar
  49. Melcher RJ, Apitz SE, Hemmingsen BB (2002) Impact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies. Appl Environ Microbiol 68(6):2858–2868PubMedPubMedCentralCrossRefGoogle Scholar
  50. Mendelssohn IA, Andersen GL, Baltz DM, Caffey RH, Carman KR, Fleeger JW, Joye SB, Lin Q, Maltby E, Overton EB (2012) Oil impacts on coastal wetlands: implications for the Mississippi River Delta ecosystem after the Deepwater Horizon oil spill. Bioscience 62(6):562–574CrossRefGoogle Scholar
  51. Mohanty G, Mukherji S (2008) Enhancement of NAPL bioavailability by induction of cell-surface hydrophobicity in Exiguobacterium aurantiacum and Burkholderia cepacia. J Biotechnol 7(3):295–306Google Scholar
  52. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700PubMedPubMedCentralGoogle Scholar
  53. Panicker G, Mojib N, Aislabie J, Bej AK (2010) Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie Van Leeuwenhoek 97(3):275–287PubMedCrossRefGoogle Scholar
  54. Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VG (2012) Metagenomics of the svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PloSone 7(6):e38571–e38580CrossRefGoogle Scholar
  55. Ritchie KB, Keller BD (2008) A scientific forum on the Gulf of Mexico: The Islands in the Stream Concept. Marine Sanctuaries Conservation Series NMSP-08-04. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Sanctuary Program, Silver Spring, MD, p.105Google Scholar
  56. Roling WF, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJ, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68(11):5537–5548PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ryerson TB, Aikin KC, Angevine WM, Atlas EL, Blake DR, Brock CA, Fehsenfeld FC, Gao RS, de Gouw JA, Fahey DW, Holloway JS, Lack DA, Lueb RA, Meinardi S, Middlebrook AM, Murphy DM, Neuman JA, Nowak JB, Parrish DD, Peischl J, Perring AE, Pollack IB, Ravishankara AR, Roberts JM, Schwarz JP, Spackman JR, Stark H, Warneke C, Watts LA (2011) Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate. Geophys Res Lett 38(7):L07803–L07808CrossRefGoogle Scholar
  58. Ryerson TB, Camilli R, Kessler JD, Kujawinski EB, Reddy CM, Valentine DL, Atlas E, Blake DR, de Gouw J, Meinardi S (2012) Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution. Proc Natl Acad Sci U S A. 109(50):20246–20253PubMedPubMedCentralCrossRefGoogle Scholar
  59. Satyanarayana T, Johri BN, Prakash A (2012) Microorganisms in environmental management. Springer, Microbes and EnvironmentGoogle Scholar
  60. Shannon CE, Weaver W, Blahut RE, Hajek B (1964) The mathematical theory of communication. University of Illinois press, UrbanaGoogle Scholar
  61. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504PubMedPubMedCentralCrossRefGoogle Scholar
  62. Simpson EH (1949) Measurement of diversity. Nature 163(4148):688CrossRefGoogle Scholar
  63. Smith DM, Snow DE, Rees E, Zischkau AM, Hanson JD, Wolcott RD, Sun Y, White J, Kumar S, Dowd SE (2010) Evaluation of the bacterial diversity of pressure ulcers using bTEFAP pyrosequencing. BMC Med Genom 3:41–54CrossRefGoogle Scholar
  64. Sundarakrishnan B, Pushpanathan M, Jayashree S, Rajendhran J, Sakthivel N, Jayachandran S, Gunasekaran P (2012) Assessment of microbial richness in pelagic sediment of Andaman sea by bacterial tag encoded FLX titanium amplicon pyrosequencing (bTEFAP). Indian J Microbiol 52(4):544–550PubMedPubMedCentralCrossRefGoogle Scholar
  65. Teramoto M, Ohuchi M, Hatmanti A, Darmayati Y, Widyastuti Y, Harayama S, Fukunaga Y (2011) Oleibacter marinus gen. nov., sp. nov., a bacterium that degrades petroleum aliphatic hydrocarbons in a tropical marine environment. Int J Syst Evol Microbiol 61:375–380PubMedCrossRefGoogle Scholar
  66. Vila J, Maria Nieto J, Mertens J, Springael D, Grifoll M (2010) Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiol Ecol 73(2):349–362PubMedGoogle Scholar
  67. Volkman JK, Revill AT (2002) Oil pollution and microbial regulation. In: Sabljic A (ed) Environmental and Ecological Chemistry, vol II, UNESCO-EoLSS, Paris, France, pp 1–9Google Scholar
  68. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007a) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267PubMedPubMedCentralCrossRefGoogle Scholar
  69. Wang YN, Cai H, Chi CQ, Lu AH, Lin XG, Jiang ZF, Wu XL (2007b) Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57 (Pt 6):1222–1226Google Scholar
  70. Wang LY, Gao CX, Mbadinga SM, Zhou L, Liu JF, Gu JD, Mu BZ (2011) Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. Int Biodeter Biodegr 65(3):444–450CrossRefGoogle Scholar
  71. Whitehead A, Dubansky B, Bodinier C, Garcia TI, Miles S, Pilley C, Raghunathan V, Roach JL, Walker N, Walter RB (2012) Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proc Natl Acad Sci U S A. 109(50):20298–20302PubMedPubMedCentralCrossRefGoogle Scholar
  72. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18(3):257–266PubMedCrossRefGoogle Scholar
  73. Yanez-Arancibia A, Day JW (2004) The Gulf of Mexico: towards an integration of coastal management with large marine ecosystem management. Ocean Coast Manage 47(11–12):537–563CrossRefGoogle Scholar
  74. Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F, Margesin R (2010) Dyadobacter psychrophilus sp nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60:1640–1643PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hyunmin Koo
    • 1
  • Nazia Mojib
    • 1
    • 2
  • Robert W. Thacker
    • 1
  • Asim K. Bej
    • 1
    • 3
  1. 1.Department of BiologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  3. 3.Department of BiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations