Advertisement

Antonie van Leeuwenhoek

, Volume 106, Issue 4, pp 771–788 | Cite as

Biocontrol potential of endophytes harbored in Radula marginata (liverwort) from the New Zealand ecosystem

  • Parijat Kusari
  • Souvik Kusari
  • Michael Spiteller
  • Oliver KayserEmail author
Original Paper

Abstract

Radula marginata and Cannabis sativa L. are two phylogenetically unrelated plant species containing structurally similar secondary metabolites like cannabinoids. The major objective of our work was the isolation, identification, biocontrol efficacies, biofilm forming potential and anti-biofilm ability of endophytic microbial community of the liverwort R. marginata, as compared to bacterial endophytic isolates harbored in C. sativa plants. A total of 15 endophytic fungal and 4 endophytic bacterial isolates were identified, including the presence of a bacterial endosymbiont within an endophytic fungal isolate. The endosymbiont was visible only when the fungus containing it was challenged with two phytopathogens Botrytis cinerea and Trichothecium roseum, highlighting a tripartite microbe–microbe interaction and biocontrol potency of endophytes under biotic stress. We also observed sixteen types of endophytic fungal-pathogen and twelve types of endophytic bacterial-pathogen interactions coupled to varying degree of growth inhibitions of either the pathogen or endophyte or both. This showed the magnitude of biocontrol efficacies of endophytes in aiding plant fitness benefits under different media (environmental) conditions. Additionally, it was ecologically noteworthy to find the presence of similar endophytic bacterial genera in both Radula and Cannabis plants, which exhibited similar functional traits like biofilm formation and general anti-biofilm activities. Thus far, our work underlines the biocontrol potency and defensive functional traits (in terms of antagonism and biofilm formation) of endophytes harbored in liverwort R. marginata as compared to the endophytic community of phylogenetically unrelated but phytochemically similar plant C. sativa.

Keywords

Radula marginata Cannabis sativa Endophytic bacteria Endophytic fungi Phytopathogens Antagonism Biofilm formation 

Notes

Acknowledgments

This research was funded by the Ministry of Innovation, Science and Research of the German Federal State North Rhine-Westphalia (NRW) and TU Dortmund by a scholarship to P. K. from the CLIB-Graduate Cluster Industrial Biotechnology. S. K. and M. S. are thankful to the German Research Foundation (DFG). We are thankful to Federal Institute for Drugs and Medical Devices (Bundesinstituts für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany for granting us the necessary permissions for working with Cannabis plants (BtM number 458 49 89). We are also very thankful to the Auckland Council, New Zealand Government for allowing us to bioprospect Radula plants.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Ansari MW, Trivedi DK, Sahoo RK, Gill SS, Tuteja N (2013) A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol Biochem 70:403–410PubMedCrossRefGoogle Scholar
  2. Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654PubMedCentralPubMedCrossRefGoogle Scholar
  3. Asakawa Y, Hashimoto T, Takikawa K, Tori M, Ogawa S (1991a) Prenyl bibenzyls from the liverworts Radula perrottetti and Radula complanata. Phytochemistry 30:235–251CrossRefGoogle Scholar
  4. Asakawa Y, Hashimoto T, Takikawa K, Tori M, Ogawa S (1991b) Prenyl bibenzyls from the liverwort Radula kojana. Phytochemistry 30:219–234CrossRefGoogle Scholar
  5. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148PubMedCentralPubMedGoogle Scholar
  6. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37PubMedCentralPubMedCrossRefGoogle Scholar
  7. Claessen D, Rozen DE, Kuipers OP, Søgaard-Andersen L, vanWezel GP (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12:115–124PubMedCrossRefGoogle Scholar
  8. Clay K (2014) Defensive symbiosis: a microbial perspective. Funct Ecol 28:293–298CrossRefGoogle Scholar
  9. Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips TC, Ivens A, Diggle SP, Brown SP (2014) Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci USA 111:4280–4284PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cullmann F, Becker H (1999) Prenylated bibenzyls from the liverwort Radula laxiramea. Z Naturforsch J Biosci 54:147–150Google Scholar
  11. Davis EC, Shaw AJ (2008) Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am J Bot 95:914–924PubMedCrossRefGoogle Scholar
  12. Davis EC, Franklin JB, Shaw AJ, Vilgalys R (2003) Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. Am J Bot 90:1661–1667PubMedCrossRefGoogle Scholar
  13. Flemming T, Muntendam R, Steup C, Kayser O (2007) Chemistry and biological activity of tetrahydrocannabinol and its derivatives. In: Khan MTH (ed) Topics in heterocyclic chemistry. Springer, Berlin, pp 1–42Google Scholar
  14. Forrest LL, Davis EC, Long DG, Stotler BJC, Clark A, Hollingsworth ML (2006) Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses. Bryologist 109:303–334CrossRefGoogle Scholar
  15. Hamilton CE, Bauerle TL (2012) A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Divers 54:39–49CrossRefGoogle Scholar
  16. Happyana N, Agnolet S, Muntendam R, Van Dam A, Schneider B, Kayser O (2013) Cannabinoid analysis of laser-microdissected trichomes of Cannabis sativa L. by LC-MS and cryogenic NMR. Phytochemistry 87:51–59PubMedCrossRefGoogle Scholar
  17. Hartmann A, Rothballer M, Hense BA, Schröder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131PubMedCentralPubMedCrossRefGoogle Scholar
  18. Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798PubMedCrossRefGoogle Scholar
  20. Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers 60:137–151CrossRefGoogle Scholar
  21. Kusari P, Spiteller M, Kayser O, Kusari S (2014a) Recent advances in research on Cannabis sativa L. endophytes and their prospect for the pharmaceutical industry. In: Kharwar RN et al (eds) Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 3–15CrossRefGoogle Scholar
  22. Kusari P, Kusari S, Lamshöft M, Sezgin S, Spiteller M, Kayser O (2014b) Quorum quenching is an antivirulence strategy employed by endophytic bacteria. Appl Microbiol Biotechnol 98:7173–7183PubMedCrossRefGoogle Scholar
  23. Kusari S, Singh S, Jayabaskaran C (2014c) Biotechological production of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303PubMedCrossRefGoogle Scholar
  24. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  25. Ludwiczuk A, Asakawa Y (2008) Distribution of terpenoids and aromatic compounds in selected southern hemispheric liverworts. Fieldiana Botany Number 47. Field Museum of Natural History, Chicago, pp 37–58Google Scholar
  26. Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515PubMedCrossRefGoogle Scholar
  27. May G, Nelson P (2014) Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Funct Ecol 28:356–363CrossRefGoogle Scholar
  28. McPartland JM (1991) Common names for diseases of Cannabis sativa L. Plant Dis 75:226–227Google Scholar
  29. McPartland JM (1996) A review of Cannabis diseases. J Int Hemp Assoc 3:19–23Google Scholar
  30. Merritt JH, DE Kadouri, O’Toole GA (2011) Growing and analyzing static biofilms. Curr Protoc Microbiol 1B:1.1–1.8Google Scholar
  31. Na YS, Baek SH (2006) Antimicrobial activity of chlororinated bibenzyl compound. Kor J Orient Physiol Pathol 20:719–723Google Scholar
  32. Na YS, Kim H, Oh HJ, Kim MJ, Baek SH (2005) Antifungal activity of chlororinated bibenzyl compound on the dermatophytic fungus Trichophyton mantagrophytes. Kor J Orient Physiol Pathol 19:1068–1072Google Scholar
  33. Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol 18:365–373PubMedCrossRefGoogle Scholar
  34. Park BH, Lee YR (2010) Concise synthesis of (±)-perrottetinene with bibenzyl cannabinoid. Bull Kor Chem Soc 31:2712–2714CrossRefGoogle Scholar
  35. Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888PubMedCrossRefGoogle Scholar
  36. Ptaszyńska A, Mułenko W, Żarnowiec J (2010) Bryophytes microniches inhabited by microfungi. Ann UMCS Biol 64:35–43Google Scholar
  37. Rheinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443CrossRefGoogle Scholar
  38. Rodriguez Estrada AE, Jonkers W, Kistler HC, May G (2012) Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Fungal Genet Biol 49:578–587PubMedCrossRefGoogle Scholar
  39. Safari M, Amache R, Esmaeilishirazifard E, Keshavarz T (2014) Microbial metabolism of quorum-sensing molecules acyl-homoserine lactones, γ-heptalactone and other lactones. Appl Microbiol Biotechnol 98:3401–3412PubMedCrossRefGoogle Scholar
  40. Toyota M, Kinugawa T, Asakawa Y (1994) Bibenzyl cannabinoid and bisbibenzyl derivative from the liverwort Radula perrottetti. Phytochemistry 37:859–862CrossRefGoogle Scholar
  41. Toyota M, Shimamura T, Ishii H, Renner M, Braggins J, Asakawa Y (2002) New bibenzyl cannabinoid from the New Zealand liverwort Radula marginata. Chem Pharm Bull 50:1390–1392PubMedCrossRefGoogle Scholar
  42. van der Werf HMG, van Geel WCA (1994) Vezelhennep als papiergrondst of, teeltonderzoek 1987–1993 Fiber hemp as a raw material for paper, crop research 1987–1993. Report nr. 177, PAGV, Lelystad, The Netherlands, p 62Google Scholar
  43. Werner GDA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC, Noe R, Johnson NC, Hammerstein P, Kiers ET (2014) Evolution of microbial markets. Proc Natl Acad Sci USA 111:1237–1244PubMedCentralPubMedCrossRefGoogle Scholar
  44. White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal rRNA genes for phylogenetics In Protocols: a guide to methods and applications. PCR Academic press, San Diego, pp 315–322Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Parijat Kusari
    • 1
  • Souvik Kusari
    • 2
  • Michael Spiteller
    • 2
  • Oliver Kayser
    • 1
    Email author
  1. 1.Chair of Technical Biochemistry, Department of Biochemical and Chemical EngineeringTU DortmundDortmundGermany
  2. 2.Chair of Environmental Chemistry and Analytical Chemistry, Department of Chemistry and Chemical BiologyInstitute of Environmental Research (INFU), TU DortmundDortmundGermany

Personalised recommendations