Skip to main content

Advertisement

Log in

Hyphomonas beringensis sp. nov. and Hyphomonas chukchiensis sp. nov., isolated from surface seawater of the Bering Sea and Chukchi Sea

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Two Gram-negative, non-spore-forming, oval to pear shaped motile strains, designated 25B14_1T and BH-BN04-4T, isolated from surface seawater from the Bering Sea and Chukchi Sea, respectively, were subjected to polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strains 25B14_1T and BH-BN04-4T clustered together with Hyphomonas atlanticus 22II1-22F38T and Hyphomonas oceanitis DSM 5155T, respectively, within genus Hyphomonas. Based on whole genome sequence analysis, the calculated DDH and ANIm values between strain 25B14_1T and BH-BN04-4T are 18.8 and 83.19 % respectively. The calculated DDH values of strain 25B14_1T and BH-BN04-4T with seven type strains ranged from 18.2 to 19.9 % and from 18.4 to 40.4 %, respectively. The ANIm values of strain 25B14_1T and BH-BN04-4T with seven type strains ranged from 83.00 to 84.67 % and from 83.14 to 90.58 %, respectively. Both isolates were found to contain Q-11 as the predominant respiratory quinone. The major fatty acids of strain 25B14_1T were identified as C16:0, C17:0, C18:1 ω7c-methyl and Summed Feature 8 (C18:1 ω6c/ω7c as defined by MIDI), while in the case of strain BH-BN04-4T they were identified as C16:0, C18:1 ω7c-methyl and Summed Feature 8 (C18:1 ω6c/ω7c). The G+C contents of 25B14_1T and BH-BN04-4T were determined to be 58.4 and 61.0 mol%, respectively. The combined phenotypic and genotypic data show that the two isolates each represent novel species of the genus Hyphomonas, for which the names Hyphomonas beringensis sp. nov. and Hyphomonas chukchiensis sp. nov. are proposed, with the type strain 25B14_1T (=MCCC 1A07321T = LMG 27914T) and BH-BN04-4T (=MCCC 1A07481T = LMG 27915T), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MCCC:

Marine Culture Collection of China

References

  • Badger JH, Eisen JA, Ward NL (2005) Genomic analysis of Hyphomonas neptunium contradicts 16S rRNA gene-based phylogenetic analysis: implications for the taxonomy of the orders ‘Rhodobacterales’ and Caulobacterales. Int J Syst Evol Microbiol 55:1021–1026

    Article  CAS  PubMed  Google Scholar 

  • Badger JH, Hoover TR, Brun YV, Weiner RM, Laub MT, Alexandre G, Mrazek J, Ren Q, Paulsen IT, Nelson KE, Khouri HM, Radune D, Sosa J, Dodson RJ, Sullivan SA, Rosovitz MJ, Madupu R, Brinkac LM, Durkin AS, Daugherty SC, Kothari SP, Giglio MG, Zhou L, Haft DH, Selengut JD, Davidsen TM, Yang Q, Zafar N, Ward NL (2006) Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus. J Bacteriol 188:6841–6850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins M (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic press, London, pp 267–287

    Google Scholar 

  • Cowan ST, Steel KJ (1993) Manual for the identification of medical bacteria. London Cambridge University Press, London

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Lai Q, Yuan J, Gu L, Shao Z (2009) Marispirillum indicum gen. nov., sp. nov., isolated from a deep-sea environment. Int J Syst Evol Microbiol 59:1278–1281

    Article  CAS  PubMed  Google Scholar 

  • Lee K-B, Liu C-T, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919

    Article  CAS  PubMed  Google Scholar 

  • Leifson E (1964) Hyphomicrobium neptunium sp. n. Antonie Van Leeuwenhoek 30:249–256

    Article  CAS  PubMed  Google Scholar 

  • Li C, Lai Q, Li G, Liu Y, Sun F, Shao Z (2014a) Multilocus sequence analysis for the assessment of phylogenetic diversity and biogeography in Hyphomonas bacteria from diverse marine environments. PLoS ONE 9:e101394

  • Li C, Lai Q, Li G, Sun F, Shao Z (2014b) Hyphomonas altanticus sp. nov., isolated from the Atlantic Ocean and emended description of the genus Hyphomonas. Syst Appl Microbiol. doi:10.1016/j.syapm.2014.05.013

  • Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff J, Auch A, Klenk H-P, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60

    Article  PubMed Central  PubMed  Google Scholar 

  • Moore RL, Weiner RM, Gebers R (1984) Notes: genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium). Int J Syst Bacteriol 34:71–73

    Article  Google Scholar 

  • Pongratz E (1957) D’une bactérie pédiculée isolée d’un pus de sinus. Shweiz Z Allg Pathol Bakteriol 20:593–608

    CAS  Google Scholar 

  • Quintero E, Weiner R (1995) Evidence for the adhesive function of the exopolysaccharide of Hyphomonas strain MHS-3 in its attachment to surfaces. Appl Environ Microbiol 61:1897–1903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quintero EJ, Busch K, Weiner RM (1998) Spatial and temporal deposition of adhesive extracellular polysaccharide capsule and fimbriae by Hyphomonas strain MHS-3. Appl Environ Microbiol 64:1246–1255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. P Natl Acad Sci USA 106:19126–19131

    Article  CAS  Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  • Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  • Shieh WY, Chen Y-W, Chaw S-M, Chiu H–H (2003) Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst Evol Microbiol 53:479–484

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Dong C, Lai Q, Lin L, Shao Z (2012) Diversity of C16 H33 Cl-degrading bacteria in surface seawater of the Arctic Ocean. Acta microbiologica Sinica 52:1011–1020

    CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Weiner RM, Devine RA, Powell DM, Dagasan L, Moore RL (1985) Hyphomonas oceanitis sp.nov., Hyphomonas hirschiana sp. nov., and Hyphomonas jannaschiana sp. nov. Int J Syst Bacteriol 35:237–243

    Article  Google Scholar 

  • Weiner RM, Melick M, O’Neill K, Quintero E (2000) Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria. Int J Syst Evol Microbiol 50:459–469

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by COMRA program (No. DY125-15-R-01), Public Welfare Project of SOA (201005032), National Natural Science Foundation of China (41206158), the Young Marine Science Foundation of SOA (2012142), the China Polar Environment Investigation and Estimate Project (2012–2015) and National Infrastructure of Natural Resources for Science and Technology Program of China (No. NIMR-2013-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongze Shao.

Additional information

Chongping Li and Qiliang Lai contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Lai, Q., Li, G. et al. Hyphomonas beringensis sp. nov. and Hyphomonas chukchiensis sp. nov., isolated from surface seawater of the Bering Sea and Chukchi Sea. Antonie van Leeuwenhoek 106, 657–665 (2014). https://doi.org/10.1007/s10482-014-0236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0236-y

Keywords

Navigation