Skip to main content
Log in

Fumarate metabolism and ATP production in Pseudomonas fluorescens exposed to nitrosative stress

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Although nitrosative stress is known to severely impede the ability of living systems to generate adenosine triphosphate (ATP) via oxidative phosphorylation, there is limited information on how microorganisms fulfill their energy needs in order to survive reactive nitrogen species (RNS). In this study we demonstrate an elaborate strategy involving substrate-level phosphorylation that enables the soil microbe Pseudomonas fluorescens to synthesize ATP in a defined medium with fumarate as the sole carbon source. The enhanced activities of such enzymes as phosphoenolpyruvate carboxylase and pyruvate phosphate dikinase coupled with the increased activities of phospho-transfer enzymes like adenylate kinase and nucleoside diphophate kinase provide an effective strategy to produce high energy nucleosides in an O2-independent manner. The alternate ATP producing machinery is fuelled by the precursors derived from fumarate with the aid of fumarase C and fumarate reductase. This metabolic reconfiguration is key to the survival of P. fluorescens and reveals potential targets against RNS-resistant organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • al-Aoukaty A, Appanna VD, Falter H (1992) Gallium toxicity and adaptation in Pseudomonas fluorescnes. FEMS Microbiol Lett 71:265–272

    Article  CAS  PubMed  Google Scholar 

  • Auger C, Lemire J, Cecchini D, Bignucolo A, Appanna VD (2011) The metabolic reprogramming evoked by nitrosative stress triggers the anaerobic utilization of citrate in Pseudomonas fluorescens. PLoS ONE 6:e28469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Auger C, Appanna V, Castonguay Z, Han S, Appanna VD (2012) A facile electrophoretic technique to monitor phosphoenolpyruvate-dependent kinases. Electrophoresis 33:1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Auger C, Han S, Appanna VP, Thomas SC, Ulibarri G, Appanna VD (2013) Metabolic reengineering invoked by microbial systems to decontaminate aluminum: implications in bioremediation technologies. Biotechnol Adv 31:266–273

    Article  CAS  PubMed  Google Scholar 

  • Bignucolo A, Appanna VP, Thomas SC, Auger C, Han S, Omri A, Appanna VD (2013) Hydrogen peroxide stress a metabolic reprogramming in Pseudomonas fluorescens: enhanced production of puyruvate. J Biotechnol 167:309–315

    Article  CAS  PubMed  Google Scholar 

  • Bradford MB (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Charoo NA, Shamsher AAA, Lian LY, Abrahamsson B, Cristofoletti R, Groot DW, Kopp S, Langguth P, Polli J, Shah VP, Dressman J (2014) Biowaiver monograph for immediate-release solid oral dosage forms: bisoprolol fumarate. J Pharma Sci 103:378–391

    Article  CAS  Google Scholar 

  • Chénier D, Bériault R, Mailloux R, Baquie M, Abramia G, Lemire J, Appanna VD (2008) Metabolic adaptation in Pseudomonas fluorescens evoked by aluminum and gallium toxicity: involvement of fumarase C and NADH oxidase. Appl Environ Microbiol 74:3977–3984

    Article  PubMed Central  PubMed  Google Scholar 

  • Couston V, Besterio S, Biran M, Diolez P, Bouchaud V, Voisin P, Michels PAM, Canioni P, Baltz T, Bringaud F (2003) ATP generation in the Trypanosoma brucei procyclic form cytosolic substrate level phosphorylation is essential, but not oxidative phosphorylation. J Biol Chem 278:49625–49635

    Article  Google Scholar 

  • Hall JW, Ji Y (2013) Sensing and adapting to anaerobic conditions by Staphylococcus aureus. Adv Appl Microbiol 84:1–25

    Article  CAS  PubMed  Google Scholar 

  • Han S, Auger C, Castonguay Z, Appanna VP, Thomas SC, Appanna VD (2012) The unravelling of metabolic dysfunctions linked to metal-associated diseases by blue native polyacrylamide gel electrophoresis. Anal Bioanal Chem 405(6):1821-1831

  • Han S, Auger C, Thomas SC, Beites CL, Appanna VD (2013) Mitochondrial biogenesis and energy production in differentiating stem cells: a functional metabolic study. Cell Reprogram 16:84–90

    Article  PubMed  Google Scholar 

  • Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192:3345–3351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ingram-Smith C, Martin SR, Smith KS (2006) Acetate kinase: not just a bacterial enzyme. Trends Microbiol 14:249–253

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Yu BJ, Kim JA, Lee Y, Choi S, Kang S (2013) The acetylproteome of Gram-positive model bacterium Bacillus subtilis. Proteomics 13:1726–1736

    Article  CAS  PubMed  Google Scholar 

  • Lemire J, Auger C, Bignucolo A, Appanna VP, Appanna VD (2012) Metabolic strategies deployed by Pseudomonas fluorescens to combat metal pollutants: biotechnological prospects in current research, technology and education topics in applied microbiology and microbial biotechnology. In: Mendez-vilas A (ed). Formalex Publisher, pp 177–187

  • Li K, Pidatala RV, Shaik R, Datta R, Ramakrishna W (2014) Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake. Environ Sci Technol 48:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Lushchak OV, Piroddi M, Galli F, Lushchak VI (2014) Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep 19:8–15

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Guo C, Li H, Peng X (2013) Low abundance of respiratory nitrate reductase is essential for Escherichia coli in resistance to aminoglycoside and cephalosporin. J Proteom 87:78–88

    Article  CAS  Google Scholar 

  • Mailloux RJ, Darwich R, Lemire J, Appanna V (2008) The monitoring of nucleotide diphosphate kinase activity by blue native polyacrylamide gel electrophoresis. Electrophor 29:1484–1489

  • Mailloux RJ, Lemire J, Appanna VD (2011) Metabolic networks to combat oxidative stress in Pseuodomonas fluorescens. Antonie Van Leeuwenhoek 99:433–442

    Article  CAS  PubMed  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  • Poole RK (2005) Nitric oxide and nitrosative stress tolerance in bacteria. Biochem Soc Trans 33:176–180

    Article  CAS  PubMed  Google Scholar 

  • Quijano C, Alvarez B, Gatti RM, Augusto O, Radi R (1997) Pathways of peroxynitrite oxidation of thiol groups. Biochem J 322:167–173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Chenier D, Beriault R, Mailloux R, Hamel RD, Appanna VD (2005) Blue native polyacrylamide gel electrophoresis and the monitoring of malate- and oxaloacetate-producing enzymes. J Biochem Biophys Methods 64:189–199

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Lemire J, Mailloux RJ, Chénier D, Hamel R, Appanna VD (2009) An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens. PloS One 4:e7344

  • Watanabe S, Zimmerman M, Goodwin MB, Sauer U, Barry CE, Boshoff HI (2011) Fumarate reductase activity maintains an energized membrane in anerobic Mycobacterium tuberculosis. PLoS ONE 7:1–15

    Google Scholar 

  • Zielonka J, Zielonka M, Sikora A, Adamus J, Joseph J, Hardy M, Ouari O, Dranka BP, Kalyanarama B (2012) Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses. J Biol Chem 287:2984–2995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelwahab Omri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appanna, V.P., Auger, C., Thomas, S.C. et al. Fumarate metabolism and ATP production in Pseudomonas fluorescens exposed to nitrosative stress. Antonie van Leeuwenhoek 106, 431–438 (2014). https://doi.org/10.1007/s10482-014-0211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0211-7

Keywords

Navigation