Skip to main content
Log in

Anhydrobiosis in yeast: is it possible to reach anhydrobiosis for yeast grown in conditions with severe oxygen limitation?

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The yeast Saccharomyces cerevisiae was shown to be extremely sensitive to dehydration–rehydration treatments when stationary phase cells were subjected to conditions of severe oxygen limitation, unlike the same cells grown in aerobic conditions. The viability of dehydrated anaerobically grown yeast cells never exceeded 2 %. It was not possible to increase this viability using gradual rehydration of dry cells in water vapour, which usually strongly reduces damage to intracellular membranes. Specific pre-dehydration treatments significantly increased the resistance of anaerobic yeast to drying. Thus, incubation of cells with trehalose (100 mM), increased the viability of dehydrated cells after slow rehydration in water vapour to 30 %. Similarly, pre-incubation of cells in 1 M xylitol or glycerol enabled up to 50–60 % of cells to successfully enter a viable state of anhydrobiosis after subsequent rehydration. We presume that trehalose and sugar alcohols function mainly according to a water replacement hypothesis, as well as initiating various protective intracellular reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Tm :

Phase transition temperature

APL:

Area per lipid

NADH:

Reduced form of nicotinamide adenine dinucleotide

References

  • Beker MJ, Rapoport AI (1987) Conservation of yeasts by dehydration. Adv Biochem Eng Biotechnol 35:127–171

    Google Scholar 

  • Beker MJ, Blumbergs JE, Ventina EJ, Rapoport AI (1984) Characteristics of cellular membranes at rehydration of dehydrated yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 19:347–352

    Google Scholar 

  • Biryusova VI, Rapoport AI (1978) Cryofractographic investigation of the structure of yeast cells in an anabiotic state. Microbiology 47:245–251

    Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  CAS  PubMed  Google Scholar 

  • Bruckmann A, Hensbergen PJ, Balog CIA, Deelder AM, Brandt R, Snoek ISI, de Steensma HY, van Heusden GPH (2009) Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells. J Proteomics 71:662–669

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1989) Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc Natl Acad Sci USA 86:520–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103

    Article  CAS  PubMed  Google Scholar 

  • de Groot MJ, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EA, Reinders MJ, Pronk JT, Heck AJ, Slijper M (2007) Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology 153:3864–3878

    Article  PubMed  Google Scholar 

  • Díaz-Hellín P, Úbeda J, Briones A (2013) Improving alcoholic fermentation by activation of Saccharomyces species during the rehydration stage. Food Sci Technol 50:126–131

    Google Scholar 

  • Dupont S, Beney L, Ritt JF, Lherminier J, Gervais P (2010) Lateral reorganization of plasma membrane is involved in the yeast resistance to severe dehydration. Biochim Biophys Acta 1798:975–985

    Article  CAS  PubMed  Google Scholar 

  • Dupont S, Beney L, Ferreira T, Gervais P (2011) Nature of sterols affects plasma membrane behavior and yeast survival during dehydration. Biochim Biophys Acta 1808:1520–1528

    Article  CAS  PubMed  Google Scholar 

  • Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L (2012) Ergosterol biosynthesis: a fungal pathway for life on land? Evolution 66:2961–2968

    Article  CAS  PubMed  Google Scholar 

  • Espindola AS, Gomes DS, Panek AD, Eleutherio EC (2003) The role of glutathione in yeast dehydration tolerance. Cryobiology 47:236–241

    Article  CAS  Google Scholar 

  • Golovina EA, Golovin AV, Hoekstra FA, Faller R (2009) Water replacement hypothesis in atomic detail—factors determining the structure of dehydrated bilayer stacks. Biophys J 97:490–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Golovina EA, Golovin A, Hoekstra FA, Faller R (2010) Water replacement hypothesis in atomic details: effect of trehalose on the structure of single dehydrated POPC bilayers. Langmuir 26:11118–11126

    Article  CAS  PubMed  Google Scholar 

  • Guzhova I, Krallish I, Khroustalyova G, Margulis B, Rapoport A (2008) Dehydration of yeast: changes in the intracellular content of Hsp 70 family proteins. Process Biochem 43:1138–1141

    Article  CAS  Google Scholar 

  • Kwast KE, Lai LC, Menda N, James DT, Aref S, Burke PV (2002) Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1p and other factors in mediating the anoxic response. J Bacteriol 184:250–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Modig T, Granath K, Adler L, Lidén G (2007) Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Appl Microbiol Biotechnol 75:289–296

    Article  CAS  PubMed  Google Scholar 

  • Novichkova AT, Rapoport AI (1984) State of the intracellular pool of free amino acids in dehydrated yeast organisms. Microbiology 53:1–4

    Google Scholar 

  • Nurminen T, Konttinen K, Suomalainen H (1975) Neutral lipids in the cells and cell envelope fractions of aerobic baker’s yeast and anaerobic brewer’s yeast. Chem Phys Lipids 14:15–32

    Article  CAS  PubMed  Google Scholar 

  • Piper MD, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J, Pronk JT (2002) Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277:37001–37008

    Article  CAS  PubMed  Google Scholar 

  • Rapoport AI, Beker ME (1983) Effect of sucrose and lactose on resistance of the yeast Saccharomyces cerevisiae to dehydration. Microbiology 52:556–559

    Google Scholar 

  • Rapoport AI, Kostrikina NA (1973) Cytological investigation of an anabiosis state of yeast organisms. Proc Acad Sci USSR Biol 5:770–773

    CAS  Google Scholar 

  • Rapoport AI, Meissel MN (1985) Survival rates of yeast organisms after dehydration as determined by fluorescence microscopy. Microbiology 54:53–55

    Google Scholar 

  • Rapoport AI, Puzyrevskaya OM, Saubenova MG (1988) Polyols and resistance of yeasts to dehydration. Microbiology 57:269–271

    Google Scholar 

  • Rapoport AI, Khroustalyova GM, Camanis GJ, Beker MJ (1995) Yeast anhydrobiosis: permeability of the plasma membrane. Microbiology 64:229–232

    Google Scholar 

  • Rapoport AI, Khroustalyova GM, Kuklina EN (1997) Anhydrobiosis in yeast: activation effect. Braz J Med Biol Res 30:9–13

    Article  CAS  PubMed  Google Scholar 

  • Rapoport AI, Khroustalyova GM, Crowe LM, Crowe JH (2009) Anhydrobiosis in yeast: stabilization by exogenous lactose. Microbiology 78:624–629

    Article  CAS  Google Scholar 

  • Shobayashi M, Ukena E, Fujii T, Iefuji H (2007) Genome-wide expression profile of sake brewing yeast under shaking and static conditions. Biosci Biotechnol Biochem 71:323–335

  • Simonin H, Beney L, Gervais P (2007) Sequence of occurring damages in yeast plasma membrane during dehydration and rehydration: mechanisms of cell death. Biochim Biophys Acta 1768:1600–1610

    Article  CAS  PubMed  Google Scholar 

  • Snoek ISI, Steensma HY (2007) Factors involved in anaerobic growth of Saccharomyces cerevisiae. Yeast 24:1–10

    Article  CAS  Google Scholar 

  • Soubeyrand V, Luparia V, Williams P, Doco T, Vernhet A, Ortiz-Julien A, Salmon JM (2005) Formation of micella containing solubilized sterols during rehydration of active dry yeasts improves their fermenting capacity. J Agric Food Chem 53:8025–8032

    Article  CAS  PubMed  Google Scholar 

  • Soubeyrand V, Julien A, Sablayrolles JM (2006) Rehydration protocols for active dry wine yeasts and the search for early indicators of yeast activity. Am J Enol Vitic 57:474–480

    CAS  Google Scholar 

  • Tai SL, Boer VM, Daran-Lapujade P, Walsh MC, de Winde JH, Daran JM, Pronk JT (2005) Two-dimensional transcriptome analysis in chemostat cultures: combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J Biol Chem 280:437–447

    Article  CAS  PubMed  Google Scholar 

  • Ter Linde JJM, Liang H, Davis RW, Steensma H, van Dijken JP, Pronk JT (1999) Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 181:7409–7413

    PubMed Central  PubMed  Google Scholar 

  • Valachovi M, Hronská L, Hapala I (2001) Anaerobiosis induces complex changes in sterol esterification pattern in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 197:41–45

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the European Regional Development Fund Project (No. 2010/0288/2DP/2.1.1.1.0/10/APIA/VIAA/038) and the Latvian Science Council Project No. 372/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Rozenfelde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozenfelde, L., Rapoport, A. Anhydrobiosis in yeast: is it possible to reach anhydrobiosis for yeast grown in conditions with severe oxygen limitation?. Antonie van Leeuwenhoek 106, 211–217 (2014). https://doi.org/10.1007/s10482-014-0182-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0182-8

Keywords

Navigation