Skip to main content

Advertisement

Log in

Cytisus villosus from Northeastern Algeria is nodulated by genetically diverse Bradyrhizobium strains

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Fifty-one rhizobial strains isolated from root nodules of Cytisus villosus growing in Northeastern Algeria were characterized by genomic and phenotypic analyses. Isolates were grouped into sixteen different patterns by PCR-RAPD. The phylogenetic status of one representative isolate from each pattern was examined by multilocus sequence analyses of four housekeeping genes (16S rRNA, glnII, recA, and atpD) and one symbiotic gene (nodC). Analysis of 16S rRNA gene sequences showed that all the isolates belonged to the genus Bradyrhizobium. Phylogenetic analyses based on individual or concatenated genes glnII, recA, and atpD indicated that strains cluster in three distinct groups. Ten out of the sixteen strains grouped together with Bradyrhizobium japonicum, while a second group of four clustered with Bradyrhizobium canariense. The third group, represented by isolates CTS8 and CTS57, differed significantly from all other bradyrhizobia known to nodulate members of the Genisteae tribe. In contrast with core genes, sequences of the nodC symbiotic gene from all the examined strains form a homogeneous group within the genistearum symbiovar of Bradyrhizobium. All strains tested nodulated Lupinus angustifolius, Lupinus luteus, and Spartium junceum but not Glycine max. From these results, it is concluded that C. villosus CTS8 and CTS57 strains represent a new lineage within the Bradyrhizobium genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Appunu C, N’Zoué A, Laguerre G (2008) Genetic diversity of native bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural-ecological-climatic regions of India. Appl Environ Microbiol 74:5991–5996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boulila F, Depret G, Boulila A, Belhadi D, Benallaoua S, Laguerre G (2009) Retama species growing in different ecological-climatic areas of northeastern Algeria have a narrow range of rhizobia that form a novel phylogenetic clade within the Bradyrhizobium genus. Syst Appl Microbiol 32:245–255

    Article  PubMed  Google Scholar 

  • Cardinale M, Lanza A, Bonni ML, Marsala S, Puglia AM, Quatrini P (2008) Diversity of rhizobia nodulating wild shrubs of Sicily and some neighbouring islands. Arch Microbiol 190:461–470

    Article  CAS  PubMed  Google Scholar 

  • Cardinale M et al (2010) Rehabilitation of mediterranean anthropogenic soils using symbiotic wild legume shrubs: plant establishment and impact on the soil bacterial community structure. App Soil Ecol 46:1–8

    Article  Google Scholar 

  • Chahboune R, Barrijal S, Moreno S, Bedmar EJ (2011a) Characterization of Bradyrhizobium species isolated from root nodules of Cytisus villosus grown in Morocco. Syst Appl Microbiol 34:440–445

    CAS  PubMed  Google Scholar 

  • Chahboune R, Carro L, Peix A, Barrijal S, Velázquez E, Bedmar EJ (2011b) Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus. Int J Syst Evol Microbiol 61:2922–2927

    Article  PubMed  Google Scholar 

  • Chahboune R et al (2012) Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. Syst Appl Microbiol 35:302–305

    Article  CAS  PubMed  Google Scholar 

  • Chang YL, Wang JY, Wang ET, Liu HC, Sui XH, Chen WX (2011) Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int J Syst Evol Microbiol 61:2496–2502

    Article  PubMed  Google Scholar 

  • Chenna R et al (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coutinho HL, de Oliveira VM, Lobato A, Maia A (1999) Evaluation of the diversity of rhizobia in Brazilian agricultural soils cultivated with soybeans. Appl Soil Ecol 13:159–167

    Article  Google Scholar 

  • Cristofolini G (1991) The biodiversity of the Leguminosae- Genisteae and its genesis. Lagascalia 19:121–128

    Google Scholar 

  • Durán D, Rey L, Sánchez-Cañizares C, Navarro A, Imperial J, Ruiz-Argüeso T (2013) Genetic diversity of indigenous rhizobial symbionts of the Lupinus mariae-josephae endemism from alkaline-limed soils within its area of distribution in Eastern Spain. Syst Appl Microbiol 36:128–136

    Article  PubMed  Google Scholar 

  • Guerrouj K et al (2013) Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 36:218–223

    Article  CAS  PubMed  Google Scholar 

  • Jarabo-Lorenzo A et al (2003) Genetic diversity of bradyrhizobial populations from diverse geographic origins that nodulate Lupinus spp. and Ornithopus spp. Syst Appl Microbiol 26:611–623

    Article  CAS  PubMed  Google Scholar 

  • Kalita M, Malek W, Kaznowski A (2004) Analysis of genetic relationship of Sarothamnus scoparius microsymbionts and Bradyrhizobium sp. by hybridization in microdilution wells. J Biosci Bioeng 97:158–161

    Article  CAS  PubMed  Google Scholar 

  • Kalita M, Stepkowski T, Lotocka B, Malek W (2006) Phylogeny of nodulation genes and symbiotic properties of Genista tinctoria bradyrhizobia. Arch Microbiol 186:87–97

    Article  CAS  PubMed  Google Scholar 

  • Lafay B, Burdon JJ (2006) Molecular diversity of rhizobia nodulating the invasive legume Cytisus scoparius in Australia. J Appl Microbiol 100:1228–1238

    Article  CAS  PubMed  Google Scholar 

  • López Gónzalez GA (2001) Los árboles y arbustos de la Península Ibérica e Islas Baleares: especies silvestres y las principales cultivadas. Mundi Prensa, Madrid

    Google Scholar 

  • Mahdhi M, Nzoué A, de Lajudie P, Mars M (2008) Characterization of root nodulating bacteria on Retama raetam in arid Tunisian soils. Nat Sci 18:43–49

    CAS  Google Scholar 

  • McInnes A, Thies JE, Abbott LK, Howieson JG (2004) The structure and diversity of rhizobial populations and communities: a review. Soil Biol Biochem 36:191–194

    Article  Google Scholar 

  • Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martinez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332

    Article  CAS  PubMed  Google Scholar 

  • Menna P, Barcellos FG, Hungria M (2009) Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 59:2934–2950

    Article  CAS  PubMed  Google Scholar 

  • Moreira F et al (2011) Landscape-wildfire interactions in Southern Europe: implications for landscape management. J Environ Manag 92:2389–2402

    Article  Google Scholar 

  • Moulin L, Bena G, Boivin-Masson C, Stepkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732

    Article  CAS  PubMed  Google Scholar 

  • Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193:830–841

    Article  PubMed  Google Scholar 

  • Pruesse E, Peplies J, Glockner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quatrini P, Scaglione G, Cardinale M, Caradonna F, Puglia AM (2002) Bradyrhizobium sp. nodulating the Mediterranean shrub Spanish broom (Spartium junceum L.). J Appl Microbiol 92:13–21

    Article  CAS  PubMed  Google Scholar 

  • Quezel P, Santa S (1962) Nouvelle flore de l’Algérie et des régions désertiques méridionales, Paris

  • Requena N, Pérez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rivas R, Peix A, Mateos PF, Trujillo ME, Martínez-Molina E, Velázquez E (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant Soil 287:23–33

    Article  CAS  Google Scholar 

  • Rivas R, Martens M, de Lajudie P, Willems A (2009) Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32:101–110

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Echeverría S, Pérez-Fernández MA (2003) Soil fertility and herb facilitation mediated by Retama sphaerocarpa. J Veg Sci 14:807–814

    Article  Google Scholar 

  • Rodríguez-Echeverría S, Pérez-Fernández MA (2005) Potential use of Iberian shruby legumes and rhizobia inoculation in revegetation projects under acidic soil conditions. App Soil Ecol 29:203–208

    Article  Google Scholar 

  • Rodríguez-Echeverría S, Pérez-Fernández MA, Vlaar S, Finan TM (2003) Analysis of the legume-rhizobia symbiosis in shrubs from central western Spain. J Appl Microbiol 95:1367–1374

    Article  PubMed  Google Scholar 

  • Rogel MA, Ormeño-Orrillo E, Martínez Romero E (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34:96–104

    Article  PubMed  Google Scholar 

  • Ruiz-Díez B, Fajardo S, Puertas-Mejía MA, de Felipe MR, Fernández-Pascual M (2009) Stress tolerance, genetic analysis and symbiotic properties of root-nodulating bacteria isolated from Mediterranean leguminous shrubs in Central Spain. Arch Microbiol 191:35–46

    Article  PubMed  Google Scholar 

  • Sánchez-Cañizares C et al (2013) Endosymbiotic bacteria nodulating a new endemic lupine Lupinus mariae-josephi from alkaline soils in Eastern Spain represent a new lineage within the Bradyrhizobium genus. Syst Appl Microbiol 34:207–215

    Article  Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for rhizobia: methods in legume-rhizobium technology. Springer, New York

    Book  Google Scholar 

  • Stepkowski T et al (2007) Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 73:3254–3264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valladares F et al (2008) Is shade beneficial for mediterranean shrubs experiencing periods of extreme drought and late-winter frosts? Ann Bot 102:923–933

    Article  PubMed Central  PubMed  Google Scholar 

  • van der Heijden MG et al (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol Ecol 56:178–187

    Article  PubMed  Google Scholar 

  • Velázquez E et al (2010) Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium. Antonie Van Leeuwenhoek 97:363–376

    Article  PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Vinuesa P et al (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575

    Article  CAS  PubMed  Google Scholar 

  • Wang JY et al (2012) Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol 63:616–624

    Article  PubMed  Google Scholar 

  • Willems A, Coopman R, Gillis M (2001) Phylogenetic and DNA-DNA hybridization analyses of Bradyrhizobium species. Int J Syst Evol Microbiol 51:111–117

    CAS  PubMed  Google Scholar 

  • Zakhia F et al (2004) Characterisation of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst Appl Microbiol 27:380–395

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

H. Ahnia and Y. Bourebaba acknowledge AECID support for a fellowship at CBGP, Madrid. This work was supported by AECID (A1/038234/11 to TRA) and MICINN (CGL-26932 to JI). We thank A. Bautista for technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Rey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahnia, H., Boulila, F., Boulila, A. et al. Cytisus villosus from Northeastern Algeria is nodulated by genetically diverse Bradyrhizobium strains. Antonie van Leeuwenhoek 105, 1121–1129 (2014). https://doi.org/10.1007/s10482-014-0173-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0173-9

Keywords

Profiles

  1. Luis Rey