Abstract
Colicins, proteinaceous antibiotics produced by Escherichia coli, specifically target competing strains killing them through one of a variety of mechanisms, including pore formation and nucleic acid degradation. The genes encoding colicins display a unique form of expression, which is tightly regulated, involving the DNA damage response regulatory system (the SOS response system), confined to stressful conditions and released by degradation of the producing cell. Given their lethal nature, colicin production has evolved a sophisticated system for repression and expression. While exploring the expression of 13 colicins we identified a novel means of induction unique to strains that kill by DNA degradation: these colicinogenic strains mildly poison themselves inflicting DNA damage that induces their DNA repair system (the SOS system), and their own expression. We established that among the four known DNase colicins (E2, E7, E8 and E9), three act to induce their own production. Using different stresses we show that this form of self-regulation entails high cost when growth conditions are not optimal, and is not carried out by individual cells but is a population-mediated trait. We discuss this novel form of colicins’ regulation and expression, and its possible molecular mechanism and evolutionary implications.




Similar content being viewed by others
References
Balbás P, Bolívar F (2004) Back to basics: pBR322 and protein expression systems in E. coli. Methods Mol Biol 267:77–90. doi:10.1385/1-59259-774-2:077
Björklund M, Ranta E, Kaitala V et al (2009) Quantitative trait evolution and environmental change. PLoS One 4:e4521. doi:10.1371/journal.pone.0004521
Braun V, Maas E (1984) Colicin B consists of a single polypeptide chain. FEMS Microbiol Lett 21:93–97. doi:10.1111/j.1574-6968.1984.tb00192.x
Cascales E, Buchanan SK, Duche D et al (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229. doi:10.1128/mmbr.00036-06
Cavard D (1997) Role of the colicin A lysis protein in the expression of the colicin A operon. Microbiology 143:2295–2303. doi:10.1099/00221287-143-7-2295
Cavard D (2004) Role of Cal, the colicin A lysis protein, in two steps of colicin A release and in the interaction with colicin A-porin complexes. Microbiology 150:3867–3875. doi:10.1099/mic.0.27160-0
Chak KF, James R (1986) Characterization of the ColE9-J plasmid and analysis of its genetic organization. J Gen Microbiol 132:61–70. doi:10.1099/00221287-132-1-61
Chang SJ, Hsieh SY, Yuan HS, Chak KF (2002) Characterization of the specific cleavage of ceiE7-mRNA of the bactericidal ColE7 operon. Biochem Bioph Res Commun 299:613–620. doi:10.1016/S0006-291X(02)02704-3
Dobson A, Cotter PD, Ross RP, Hill C (2011) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78:1–6. doi:10.1128/AEM.05576-11
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797
Eijsink VGH, Axelsson L, Diep DB et al (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81:639–654. doi:10.1023/A:1020582211262
Gillor O, Vriezen JA, Riley MA (2008) The role of SOS boxes in enteric bacteriocin regulation. Microbiology 154:1783–1792. doi:10.1099/mic.0.2007/016139-0
Gordon DM, Riley MA, Pinou T (1998) Temporal changes in the frequency of colicinogeny in Escherichia coli from house mice. Microbiology 144:2233–2240. doi:10.1099/00221287-144-8-2233
Hammond PM, Philip KA, Hinton RJ, Jack GW (1990) Recombinant protein A from Escherichia coli JM83. Ann N Y Acad Sci 613:863–867. doi:10.1111/j.1749-6632.1990.tb18278.x
Hibbing M, Fuqua C, Parsek M, Peterson S (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25. doi:10.1038/nrmicro2259
James R, Kleanthous C, Moore GR (1996) The biology of E colicins: paradigms and paradoxes. Microbiology 142:1569–1580. doi:10.1099/13500872-142-7-1569
Kamensek S, Podlesek Z, Gillor O, Zgur-Bertok D (2010) Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression. BMC Microbiol 10:283. doi:10.1186/1471-2180-10-283
Kleanthous C (2010) Swimming against the tide: progress and challenges in our understanding of colicin translocation. Nat Rev Microbiol 8:843–848. doi:10.1038/nrmicro2454
Liao CC, Chang SJ, Chak KF (2007) A sequence-specific RNase activity derived from the interface of the dimeric immunity protein of the ColE7 operon. Protein Pept Lett 14:147–150. doi:10.2174/092986607779816041
Majeed H, Gillor O, Kerr B, Riley MA (2011) Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J 5:71–81. doi:10.1038/ismej.2010.90
Mark G, Lawrence P, James R (1984) Characterisation of the ColE8 plasmid, a new member of the group E colicin plasmids. Gene 29:145–155. doi:10.1016/0378-1119(84)90175-6
Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510. doi:10.1016/s0300-9084(02)01422-0
Mulec J, Podlesek Z, Mrak P et al (2003) A cka-gfp transcriptional fusion reveals that the colicin K activity gene is induced in only 3 percent of the population. J Bacteriol 185:654–659. doi:10.1128/jb.185.2.654-659.2003
Papadakos G, Wojdyla JA, Kleanthous C (2011) Nuclease colicins and their immunity proteins. Q Rev Biophys 45:57–103. doi:10.1017/S0033583511000114
Pugsley A (1983) Autoinduced synthesis of colicin E2. Mol Gen Genet 190:379–383. doi:10.1007/bf00331062
Pugsley A (1985) Escherichia coli K12 strains for use in the identification and characterization of colicins. J Gen Microbiol 131:369–376. doi:10.1099/00221287-131-2-369
Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137. doi:10.1146/annurev.micro.56.012302.161024
Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
Strassmann JE, Gilbert OM, Queller DC (2011) Kin discrimination and cooperation in microbes. Annu Rev Microbiol 65:349–367. doi:10.1146/annurev.micro.112408.134109
Van Dyk TK, DeRose EJ, Gonye GE (2001) LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains. J Bacteriol 183:5496–5505. doi:10.1128/JB.183.19.5496-5505.2001
Vercken E, Wellenreuther M, Svensson EI, Mauroy B (2012) Don’t fall off the adaptation cliff: when asymmetrical fitness selects for suboptimal traits. PLoS One 7:e34889. doi:10.1371/journal.pone.0034889
Zaslaver A, Bren A, Ronen M et al (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:623–628
Žgur-Bertok D (2013) DNA damage repair and bacterial pathogens. PLoS Pathog 9:e1003711. doi:10.1371/journal.ppat.1003711
Zhang SP, Yan LF, Zubay G (1988) Regulation of gene expression in plasmid ColE1: delayed expression of the kil gene. J Bacteriol 170:5460–5467
Acknowledgments
This work was supported by US National Institutes of Health grant R01A1064588-01A2 and the Israeli Ministry for Science and Technology: Slovenia-Israel Research Cooperation. We are grateful to Prof D. Zgur-Bertok and Prof C. Kleanthous for their helpful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ghazaryan, L., Soares, M.I.M. & Gillor, O. Auto-regulation of DNA degrading bacteriocins: molecular and ecological aspects. Antonie van Leeuwenhoek 105, 823–834 (2014). https://doi.org/10.1007/s10482-014-0136-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10482-014-0136-1


