Antonie van Leeuwenhoek

, Volume 105, Issue 4, pp 687–696 | Cite as

Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability

  • Sara Centeno-Leija
  • Gerardo Huerta-Beristain
  • Martha Giles-Gómez
  • Francisco Bolivar
  • Guillermo Gosset
  • Alfredo Martinez
Original Paper


The biosynthesis of poly-3-hydroxybutyrate (P3HB), a biodegradable bio-plastic, requires acetyl-CoA as precursor and NADPH as cofactor. Escherichia coli has been used as a heterologous production model for P3HB, but metabolic pathway analysis shows a deficiency in maintaining high levels of NADPH and that the acetyl-CoA is mainly converted to acetic acid by native pathways. In this work the pool of NADPH was increased 1.7-fold in E. coli MG1655 through plasmid overexpression of the NADP+-dependent glyceraldehyde 3-phosphate dehydrogenase gene (gapN) from Streptococcus mutans (pTrcgapN). Additionally, by deleting the main acetate production pathway (ackA-pta), the acetic acid production was abolished, thus increasing the acetyl-CoA pool. The P3HB biosynthetic pathway was heterologously expressed in strain MG1655 Δack-pta/pTrcgapN, using an IPTG inducible vector with the P3HB operon from Azotobacter vinelandii (pPHB Av ). Cultures were performed in controlled fermentors using mineral medium with glucose as the carbon source. Accordingly, the mass yield of P3HB on glucose increased to 73 % of the maximum theoretical and was 30 % higher when compared to the progenitor strain (MG1655/pPHB Av ). In comparison with the wild type strain expressing pPHB Av , the specific accumulation of PHB (gPHB/gDCW) in MG1655 Δack-pta/pTrcgapN/pPHB Av increased twofold, indicating that as the availability of NADPH is raised and the production of acetate abolished, a P3HB intracellular accumulation of up to 84 % of the E. coli dry weight is attainable.


Escherichia coli NAD(P)+-dependent glyceraldehyde-3-phosphate-dehydrogenase NAD(P)H Acetic acid Acetyl-CoA pool Poly-3-hydroxybutyrate 



We gratefully acknowledge Andrea del Carmen Díaz-Marcelín, María Jose Alvarado, Mercedes Enzaldo, Ramón de Anda, Georgina Hernández-Chávez, Luz María Martínez, José Utrilla and Adriana Longoria for their technical support during the process of the work. We thank Daniel Segura for providing us with the Chromosomal DNA of A. vinelandii. This Project was supported by DGAPA/PAPIIT/UNAM Grant IT201414 and UC MEXUS-CONACYT Collaborative Grant CN-12-581. SC-L held a scholarship from CONACyT.

Conflict of interest

The authors declare that they have no conflict of interests.


  1. Amann E, Ochs B, Abel K (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69:301–315CrossRefPubMedGoogle Scholar
  2. Andersen KB, von Meyenburg K (1980) Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol 144:114–123PubMedCentralPubMedGoogle Scholar
  3. Boyd DA, Cvitkovitch DG, Hamilton I (1995) Sequence, expression, and function of the gene for the phosphate dehydrogenase of Streptococcus mutans. J Bacteriol 177:2622–2627PubMedCentralPubMedGoogle Scholar
  4. Castaño-Cerezo S, Pastor JM, Renilla S et al (2009) An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli. Microb Cell Fact 8(54):1–19Google Scholar
  5. Centeno-Leija S, Utrilla J, Flores N et al (2013) Metabolic and transcriptional response of Escherichia coli with a NADP+-dependent glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans. Antonie Van Leeuwenhoek 104(6):913–924CrossRefPubMedGoogle Scholar
  6. Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156PubMedCentralPubMedGoogle Scholar
  7. Charpentier B, Branlant C (1994) The Escherichia coli gapA gene is transcribed by the vegetative RNA polymerase holoenzyme Eσ70 and by the heat shock RNA polymerase Eσ32. J Bacteriol 176:830–839PubMedCentralPubMedGoogle Scholar
  8. Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446CrossRefPubMedGoogle Scholar
  9. D’Alessio G, Josse J (1971) Glyceraldehyde phosphate dehydrogenase of Escherichia coli. J Biol Chem 246:4326–4333PubMedGoogle Scholar
  10. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645PubMedCentralCrossRefPubMedGoogle Scholar
  11. Diaz Ricci JC, Hernández ME (2000) Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 20:79–108CrossRefPubMedGoogle Scholar
  12. Fillinger S, Boschi-Muller S, Azza S et al (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275:14031–14037CrossRefPubMedGoogle Scholar
  13. Fuhrer T, Sauer U (2009) Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J Bacteriol 191:2112–2121PubMedCentralCrossRefPubMedGoogle Scholar
  14. Harding KG, Dennis JS, von Blottnitz H, Harrison STL (2007) Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically based poly-beta-hydroxybutyric acid using life cycle analysis. J Biotechnol 130:57–66CrossRefPubMedGoogle Scholar
  15. Henderson R, Jones CW (1997) Poly-3-hydroxybutyrate production by washed cells of Alcaligenes eutrophus; purification, characterisation and potential regulatory role of citrate synthase. Arch Microbiol 168:486–492CrossRefPubMedGoogle Scholar
  16. Iddar A, Valverde F, Serrano A, Soukri A (2002) Expression, purification, and characterization of recombinant nonphosphorylating NAP-dependent glycerladehyde-3-phosphate dehydrogenase from Clostridium acetobutylicum. Protein Expr Purif 25:519–526CrossRefPubMedGoogle Scholar
  17. Iddar A, Valverde F, Serrano A, Soukri A (2003) Purification of recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus pyogenes expressed in E. coli. Mol Cell Biochem 247:195–203CrossRefPubMedGoogle Scholar
  18. Iddar A, Valverde F, Assobhei O et al (2005) Widespread occurrence of non-phosphorylating dehydrogenase among gram-positive bacteria. Int Microbiol 8:251–258PubMedGoogle Scholar
  19. Jian J, Zhang S-Q, Shi Z-Y et al (2010) Production of polyhydroxyalkanoates by Escherichia coli mutants with defected mixed acid fermentation pathways. Appl Microbiol Biotechnol 87:2247–2256CrossRefPubMedGoogle Scholar
  20. Jung Y-M, Lee J-N, Shin H-D, Lee Y-H (2004) Role of tktA gene in pentose phosphate pathway on odd-ball biosynthesis of poly-beta-hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon. J Biosci Bioeng 98:224–227CrossRefPubMedGoogle Scholar
  21. Kabir M, Shimizu K (2003a) Gene expression patterns for metabolic pathway in pgi knockout Escherichia coli with and without phb genes based on RT-PCR. J Biotechnol 105:11–31CrossRefPubMedGoogle Scholar
  22. Kabir MM, Shimizu K (2003b) Fermentation characteristics and protein expression patterns in a recombinant Escherichia coli mutant lacking phosphoglucose isomerase for poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol 62:244–255CrossRefPubMedGoogle Scholar
  23. Kessler B, Witholt B (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86:97–104CrossRefPubMedGoogle Scholar
  24. Lim S-J, Jung Y-M, Shin H-D, Lee Y-H (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93:543–549PubMedGoogle Scholar
  25. Lütke-Eversloh T, Steinbüchel A (2004) Microbial polythioesters. Macromol Biosci 4:166–174CrossRefPubMedGoogle Scholar
  26. Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedCentralPubMedGoogle Scholar
  27. Marchal S, Branlant G (2002) Characterization of the amino acids involved in substrate specificity of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. J Biol Chem 277:39235–39242CrossRefPubMedGoogle Scholar
  28. Martínez I, Zhu J, Lin H et al (2008) Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 10:352–359CrossRefPubMedGoogle Scholar
  29. Nagradova NK (2001) Study of the properties of phosphorylating d-glyceraldehyde-3-phosphate dehydrogenase. Biochem (Mosc) 66:1067–1076CrossRefGoogle Scholar
  30. Pettinari MJ, Vázquez GJ, Silberschmidt D et al (2001) Poly (3-hydroxybutyrate) synthesis genes in Azotobacter sp. strain FA8. Appl Environ Microbiol 67:5331–5334PubMedCentralCrossRefPubMedGoogle Scholar
  31. Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91–108CrossRefPubMedGoogle Scholar
  32. Sambrook J, Rusell D (2001) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  33. Sauer U, Canonaco F, Heri S et al (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619CrossRefPubMedGoogle Scholar
  34. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847PubMedCentralPubMedGoogle Scholar
  35. Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–238Google Scholar
  36. Shi H, Nikawa J, Shimizu K (1999) Effect of modifying metabolic network on poly-3-hydroxybutyrate biosynthesis in recombinant Escherichia coli. J Biosci Bioeng 87:666–677CrossRefPubMedGoogle Scholar
  37. Shishatskaya EI, Volova TG, Gordeev S, Puzyr P (2005) Degradation of P(3HB) and P(3HB-co-3HV) in biological media. J Biomater Sci Polym Ed 16:643–657CrossRefPubMedGoogle Scholar
  38. Tyo KEJ, Fischer CR, Simeon F, Stephanopoulos G (2010) Analysis of polyhydroxybutyrate flux limitations by systematic genetic and metabolic perturbations. Metab Eng 12:187–195CrossRefPubMedGoogle Scholar
  39. Valverde F, Losada M, Serrano A (1999) Engineering a central metabolic pathway: glycolysis with no net phosphorylation in an Escherichia coli gap mutant complemented with a plant gapN gene. FEBS Lett 449:153–158CrossRefPubMedGoogle Scholar
  40. Van Wegen RJ, Lee SY, Middelberg P (2001) Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. Biotechnol Bioeng 74:70–80CrossRefPubMedGoogle Scholar
  41. Vemuri GN, Altman E, Sangurdekar DP et al (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72:3653–3661PubMedCentralCrossRefPubMedGoogle Scholar
  42. Wang F, Lee SY (1997) Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl Environ Microbiol 63:4765–4769PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sara Centeno-Leija
    • 1
  • Gerardo Huerta-Beristain
    • 1
    • 3
  • Martha Giles-Gómez
    • 2
  • Francisco Bolivar
    • 1
  • Guillermo Gosset
    • 1
  • Alfredo Martinez
    • 1
  1. 1.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  2. 2.Departamento de Biología, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  3. 3.Unidad Académica de Ciencias Químico BiológicasUniversidad Autónoma de GuerreroChilpancingoMexico

Personalised recommendations