Skip to main content
Log in

Crescent and star shapes of members of the Chlamydiales order: impact of fixative methods

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Members of the Chlamydiales order all share a biphasic lifecycle alternating between small infectious particles, the elementary bodies (EBs) and larger intracellular forms able to replicate, the reticulate bodies. Whereas the classical Chlamydia usually harbours round-shaped EBs, some members of the Chlamydia-related families display crescent and star-shaped morphologies by electron microscopy. To determine the impact of fixative methods on the shape of the bacterial cells, different buffer and fixative combinations were tested on purified EBs of Criblamydia sequanensis, Estrella lausannensis, Parachlamydia acanthamoebae, and Waddlia chondrophila. A linear discriminant analysis was performed on particle metrics extracted from electron microscopy images to recognize crescent, round, star and intermediary forms. Depending on the buffer and fixatives used, a mixture of alternative shapes were observed in varying proportions with stars and crescents being more frequent in C. sequanensis and P. acanthamoebae, respectively. No tested buffer and chemical fixative preserved ideally the round shape of a majority of bacteria and other methods such as deep-freezing and cryofixation should be applied. Although crescent and star shapes could represent a fixation artifact, they certainly point towards a diverse composition and organization of membrane proteins or intracellular structures rather than being a distinct developmental stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amann R, Springer N, Schonhuber W, Ludwig W, Schmid EN, Muller KD, Michel R (1997) Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 63(1):115–121

    PubMed  CAS  Google Scholar 

  • Bertelli C, Collyn F, Croxatto A, Rückert C, Polkinghorne A, Kebbi-Beghdadi C, Goesmann A, Vaughan L, Greub G (2010) The Waddlia genome: a window into chlamydial biology. PLoS ONE 5(5):e10890. doi:10.1371/journal.pone.0010890

    Article  PubMed  Google Scholar 

  • Casson N, Medico N, Bille J, Greub G (2006) Parachlamydia acanthamoebae enters and multiplies within pneumocytes and lung fibroblasts. Microbes Infect 8(5):1294–1300. doi:10.1016/j.micinf.2005.12.011

    Article  PubMed  CAS  Google Scholar 

  • Cayrou C, Henrissat B, Gouret P, Pontarotti P, Drancourt M (2012) Peptidoglycan: a post-genomic analysis. BMC Microbiol 12:294

    Article  PubMed  CAS  Google Scholar 

  • Collingro A, Tischler P, Weinmaier T, Penz T, Heinz E, Brunham RC, Read TD, Bavoil PM, Sachse K, Kahane S, Friedman MG, Rattei T, Myers GSA, Horn M (2011) Unity in variety—the pan-genome of the Chlamydiae. Mol Biol Evol 28(12):3253–3270. doi:10.1093/molbev/msr161

    Article  PubMed  CAS  Google Scholar 

  • Corsaro D, Thomas V, Goy G, Venditti D, Radek R, Greub G (2007) ‘Candidatus Rhabdochlamydia crassificans’, an intracellular bacterial pathogen of the cockroach Blatta orientalis (Insecta: Blattodea). Syst Appl Microbiol 30(3):221–228. doi:10.1016/j.syapm.2006.06.001

    Article  PubMed  CAS  Google Scholar 

  • Corsaro D, Feroldi V, Saucedo G, Ribas F, Loret JF, Greub G (2009) Novel Chlamydiales strains isolated from a water treatment plant. Environ Microbiol 11(1):188–200

    Article  PubMed  CAS  Google Scholar 

  • Fox A, Rogers JC, Gilbart J, Morgan S, Davis CH, Knight S, Wyrick PB (1990) Muramic acid is not detectable in Chlamydia psittaci or Chlamydia trachomatis by gas chromatography-mass spectrometry. Infect Immun 58(3):835–837

    PubMed  CAS  Google Scholar 

  • Goy G, Croxatto A, Greub G (2008) Waddlia chondrophila enters and multiplies within human macrophages. Microbes Infect 10(5):556–562. doi:10.1016/j.micinf.2008.02.003

    Article  PubMed  CAS  Google Scholar 

  • Greub G (2010) International committee on systematics of prokaryotes. Subcommittee on the taxonomy of the Chlamydiae: minutes of the closed meeting, 21 June 2010, Hof bei Salzburg, Austria. Int J Syst Evol Microbiol 60(Pt 11):2694. doi:10.1099/ijs.0.028233-0

    Article  PubMed  Google Scholar 

  • Greub G, Raoult D (2002) Crescent bodies of Parachlamydia acanthamoeba and its life cycle within Acanthamoeba polyphaga: an electron micrograph study. Appl Environ Microbiol 68(6):3076–3084

    Article  PubMed  CAS  Google Scholar 

  • Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17(2):413–433

    Article  PubMed  Google Scholar 

  • Greub G, La Scola B, Raoult D (2003a) Parachlamydia acanthamoeba is endosymbiotic or lytic for Acanthamoeba polyphaga depending on the incubation temperature. Ann NY Acad Sci 990:628–634

    Article  PubMed  Google Scholar 

  • Greub G, Mege J-L, Raoult D (2003b) Parachlamydia acanthamoebae enters and multiplies within human macrophages and induces their apoptosis. Infect Immun 71(10):5979–5985

    Article  PubMed  CAS  Google Scholar 

  • Greub G, Mege J-L, Gorvel J-P, Raoult D, Méresse S (2005) Intracellular trafficking of Parachlamydia acanthamoebae. Cell Microbiol 7(4):581–589. doi:10.1111/j.1462-5822.2004.00488.x

    Article  PubMed  CAS  Google Scholar 

  • Heinz E, Tischler P, Rattei T, Myers G, Wagner M, Horn M (2009) Comprehensive in silico prediction and analysis of chlamydial outer membrane proteins reflects evolution and life style of the Chlamydiae. BMC Genomics 10:634. doi:10.1186/1471-2164-10-634

    Article  PubMed  Google Scholar 

  • Heinz E, Pichler P, Heinz C, Op Den Camp HJM, Toenshoff ER, Ammerer G, Mechtler K, Wagner M, Horn M (2010) Proteomic analysis of the outer membrane of Protochlamydia amoebophila elementary bodies. Proteomics 10(24):4363–4376. doi:10.1002/pmic.201000302

    Article  PubMed  CAS  Google Scholar 

  • Henrichfreise B, Schiefer A, Schneider T, Nzukou E, Poellinger C, Hoffmann TJ, Johnston KL, Moelleken K, Wiedemann I, Pfarr K, Hoerauf A, Sahl HG (2009) Functional conservation of the lipid II biosynthesis pathway in the cell wall-less bacteria Chlamydia and Wolbachia: why is lipid II needed? Mol Microbiol 73(5):913–923

    Article  PubMed  CAS  Google Scholar 

  • Horn M (2008) Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62:113–131. doi:10.1146/annurev.micro.62.081307.162818

    Article  PubMed  CAS  Google Scholar 

  • Horn M, Wagner M, Muller KD, Schmid EN, Fritsche TR, Schleifer KH, Michel R (2000) Neochlamydia hartmannellae gen. nov., sp. nov. (Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. Microbiology 146(Pt 5):1231–1239

    PubMed  CAS  Google Scholar 

  • Horn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U, Fartmann B, Brandt P, Nyakatura GJ, Droege M, Frishman D, Rattei T, Mewes HW, Wagner M (2004) Illuminating the evolutionary history of chlamydiae. Science 304(5671):728–730

    Article  PubMed  CAS  Google Scholar 

  • Kebbi-Beghdadi C, Batista C, Greub G (2011a) Permissivity of fish cell lines to three Chlamydia-related bacteria: Waddlia chondrophila, Estrella lausannensis and Parachlamydia acanthamoebae. FEMS Immunol Med Microbiol 63(3):339–345. doi:10.1111/j.1574-695X.2011.00856.x

    Article  PubMed  CAS  Google Scholar 

  • Kebbi-Beghdadi C, Cisse O, Greub G (2011b) Permissivity of Vero cells, human pneumocytes and human endometrial cells to Waddlia chondrophila. Microbes Infect 13(6):566–574

    Article  PubMed  CAS  Google Scholar 

  • Labutti K, Sikorski J, Schneider S, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Tindall BJ, Rohde M, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2010) Complete genome sequence of Planctomyces limnophilus type strain (Mu 290). Stand Genomic Sci 3(1):47–56

    Article  PubMed  Google Scholar 

  • Lee KC, Webb RI, Janssen PH, Sangwan P, Romeo T, Staley JT, Fuerst JA (2009) Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiol 9:5. doi:10.1186/1471-2180-9-5

    Article  PubMed  Google Scholar 

  • Lienard J, Greub G (2011) Discovering new pathogens: amoebae as tools to isolate amoeba-resisting microorganisms from environmental samples. In: Sen K, Ashbolt NJ (eds) Environmental microbiology: current technology and water applications. Caister Academic Press, Norfolk, p 143e162

    Google Scholar 

  • Lienard J, Croxatto A, Prod’hom G, Greub G (2011) Estrella lausannensis, a new star in the Chlamydiales order. Microbes Infect 13:1232–1241

    Article  PubMed  CAS  Google Scholar 

  • Lindsay MRW, Webb RI, Hosmer HM, Fuerst JA (1995) Effects of fixative and buffer on morphology and ultrastructure of a freshwater planctomycete, Gemmata obscuriglobus. J Microbiol Methods 21:45–54

    Article  Google Scholar 

  • Matsumoto A, Fujiwara E, Higashi N (1976) Observations of the surface projections of infectious small cell of Chlamydia psittaci in thin sections. J Electron Microsc 25(3):169–170

    CAS  Google Scholar 

  • McCoy AJ, Maurelli AT (2006) Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends Microbiol 14(2):70–77. doi:10.1016/j.tim.2005.12.004

    Article  PubMed  CAS  Google Scholar 

  • Mitchell CM, Mathews SA, Theodoropoulos C, Timms P (2009) In vitro characterisation of koala Chlamydia pneumoniae: morphology, inclusion development and doubling time. Vet Microbiol 136(1–2):91–99. doi:10.1016/j.vetmic.2008.10.008

    Article  PubMed  Google Scholar 

  • Miyashita N, Matsumoto A, Fukano H, Niki Y, Matsushima T (2001) The 7.5-kb common plasmid is unrelated to the drug susceptibility of Chlamydia trachomatis. J Infect Chemother 7(2):113–116. doi:10.1007/s1015610070113

    Article  PubMed  CAS  Google Scholar 

  • Rasband WS (1997–2012) ImageJ. U. S. National Institutes of Health, Bethesda

  • RCoreTeam (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  PubMed  CAS  Google Scholar 

  • Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95(5):1921–1942

    PubMed  CAS  Google Scholar 

  • Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282(5389):754–759

    Article  PubMed  CAS  Google Scholar 

  • Thomas V, Casson N, Greub G (2006) Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ Microbiol 8(12):2125–2135

    Article  PubMed  CAS  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Yoon J, Matsuo Y, Matsuda S, Kasai H, Yokota A (2010) Cerasicoccus maritimus sp. nov. and Cerasicoccus frondis sp. nov., two peptidoglycan-less marine verrucomicrobial species, and description of Verrucomicrobia phyl. nov., nom. rev. J Gen Appl Microbiol 56(3):213–222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (project no. PDFMP3-127302). Brigida Rusconi is supported by the Swiss National Science Foundation within the PRODOC program “Infection and Immunity”. Julia Lienard is supported by SUEZ-Environment (CIRSEE, Paris, France). We thank D. Bardy (CHUV) for measurements of osmolarity. We thank the PFMU at the Medical Faculty of Geneva for assisting with electron microscopy.

Conflict of interest

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors declare having no conflict of interest related to the content of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Greub.

Additional information

Brigida Rusconi and Julia Lienard have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8098 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusconi, B., Lienard, J., Aeby, S. et al. Crescent and star shapes of members of the Chlamydiales order: impact of fixative methods. Antonie van Leeuwenhoek 104, 521–532 (2013). https://doi.org/10.1007/s10482-013-9999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9999-9

Keywords

Navigation