Skip to main content
Log in

Characterization of major hydrolytic enzymes secreted by Pythium myriotylum, causative agent for soft rot disease

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Pythium myriotylum, an oomycetous necrotroph is the causal agent of soft rot disease affecting several crops. Successful colonization by necrotrophs depends on their secretion of a diverse array of plant cell wall degrading enzymes (CWDEs). The induction dynamics of CWDEs secreted by P. myriotylum was analysed as little information is available for this pathogen. Activities of CWDEs that included pectinase, cellulase, xylanase and protease were detected using radial diffusion assay and differential staining. In Czapek Dox minimal medium supplemented with respective substrates as carbon source, the increase in CWDE activities was observed till 8 days of incubation after which a gradual decline in enzymatic activities was observed. With sucrose as sole carbon source, all the enzymes studied showed increase in activity with fungal growth while with cell wall material derived from ginger rhizome as sole carbon source, an initial spurt in cellulase, xylanase and pectinase activities was observed 3 days post incubation while protease activity increased from three days of incubation and reached maximum at 13 days of incubation. To further evaluate the role of CWDEs in pathogenicity, UV-induced mutants (pmN14uv1) were generated wherein significant reduction in cellulase, pectinase and protease activities were observed while that of xylanase remained unchanged compared to wild type isolate (RGCBN14). Bioassays indicated changes in infection potential of pmN14uv1 thereby suggesting the crucial role played by P. myriotylum CWDEs in initiating the rotting process. Hence appropriate strategies that target the production/activity of these secretory hydrolytic enzymes will help in reducing disease incidence/pathogen virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Andersson MG, Cerenius L (2002) Pumilio homologue from Saprolegnia parasitica specifically expressed in undifferentiated spore cysts. Eukaryot Cell 1:105–111

    Article  CAS  PubMed  Google Scholar 

  • Andrew M, Barua R, Short SM, Kohn LM (2012) Evidence for a common toolbox based on necrotrophy in a fungal lineage spanning necrotrophs, biotrophs, endophytes, host generalists and specialists. PLoS One 7(1):e29943

    Article  CAS  PubMed  Google Scholar 

  • Annis SL, Goodwin PH (1997) Recent advances in the molecular genetics of plant cell-wall degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103:1–14

    Article  CAS  Google Scholar 

  • Archer DB, Peberdy JF (1997) The molecular biology of secreted enzyme production by fungi. Crit Rev Biotechnol 17:273–306

    Article  CAS  PubMed  Google Scholar 

  • Attard A, Gourgues M, Galiana E, Panabières F, Ponchet M, Keller H (2008) Strategies of attack and defense in plant-oomycete interactions, accentuated for Phytophthora parasitica Dastur (syn. P. Nicotianae Breda de Haan). J Plant Physiol 165(1):83–94

    Article  CAS  PubMed  Google Scholar 

  • Barras F, Vangijsegem F, Chatterjee AK (1994) Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol 328(1):201–234

    Article  Google Scholar 

  • Bateman DF, van Etten HD (1969) Susceptibility to enzymatic degradation of cell walls from bean plants resistant and susceptible to Rhizoctonia solani Kuhn. Plant Physiol 44(5):641–648

    Article  CAS  PubMed  Google Scholar 

  • Bircher U, Hohl HR (1997) Environmental signaling during induction of appressorium formation in Phytophthora. Mycol Res 101:395–402

    Article  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 78(1):1–16

    Article  Google Scholar 

  • Boudjeko T, Andeme-Onzighi C, Vicre M, Balange A-P, Ndoumou DO, Driouich A (2006) Loss of pectin is an early event during infection of cocoyam roots by Pythium myriotylum. Planta 223:271–282

    Article  CAS  PubMed  Google Scholar 

  • Brown RL, Chen Z-Y, Cleveland TE, Cotty PJ, Cary JW (2001) Variation in in vitro α-amylase and protease activity is related to the virulence of Aspergillus flavus isolates. J Food Prot 64:401–414

    CAS  PubMed  Google Scholar 

  • Brunner PC, Torriani SFF, Croll D, Stukenbrock EH, McDonald BA (2013) Coevolution and life cycle specialization of plant cell wall degrading enzymes in a hemibiotrophic pathogen. Mol Biol Evol 30(6):1337–1347

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MM (1971) Solar UV radiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology, vol 6. Academic Press, New York, pp 131–177

    Google Scholar 

  • Campion C, Massiot P, Rouxel F (1997) Aggressiveness and production of cell-wall degrading enzymes by Pythium violae, Pythium sulcatum and Pythium ultimum, responsible for cavity spot on carrots. Eur J Plant Pathol 103:725–735

    Article  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plant: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127:551–565

    Article  CAS  PubMed  Google Scholar 

  • Dube HC, Prabakaran K (1989) Cell wall degrading enzymes of Pythium. In: Agnihothri VP (ed) Perspectives in plant pathology (1st edn). Today and Tomorrow Publishers, New Delhi, pp 181–188

    Google Scholar 

  • Gow NA (2004) New angles in mycology: studies in directional growth and directional motility. Mycol Res 108:5–13

    Article  PubMed  Google Scholar 

  • Hardham AR (2007) Cell biology of plant–oomycete interactions. Cell Microbiol 9(1):31–39

    Google Scholar 

  • Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B radiation inhibits the growth of antarctic terrestrial fungi. Appl Environ Microbiol 69(3):1488–1491

    Article  CAS  PubMed  Google Scholar 

  • Janardhanan KK, Husain A (1974) Production of a toxic metabolite and pectolytic enzyme by Pythium butleri. Mycopathol Mycol Appl 52:325–330

    Article  CAS  PubMed  Google Scholar 

  • Jeon J, Choi J, Lee G-W, Dean RA, Lee Y-H (2013) Experimental evolution reveals genome-wide spectrum and dynamics of mutations in the rice blast fungus Magnaporthe oryzae. PLoS One 8(5):e65416

    Article  CAS  PubMed  Google Scholar 

  • Jiang RH, Tyler BM (2012) Mechanisms and evolution of virulence in oomycetes. Annu Rev Phytopathol 50:295–318

    Article  CAS  PubMed  Google Scholar 

  • Kamoun S (2003) Molecular genetics of pathogenic oomycetes. Euk Cell 2(2):191–199

    Article  CAS  Google Scholar 

  • Keay L, Wildi BS (1970) Protease of genus Bacillus.I. neutral protease. Biotechnol Bioengg 12:179–212

    Article  CAS  Google Scholar 

  • Kikot GE, Hours RA, Alconada TM (2009) Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. J Basic Microbiol 49:231–241

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kantzes JG, Weaver LO (1973) Infection of aboveground parts of bean by Pythium aphanidermatum. Phytopathology 64:373–380

    Article  Google Scholar 

  • King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels 4:4

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE (1985) Enzymatic penetration of the plant cuticle by fungal pathogens. Annu Rev Phytopathol 23:223–250

    Article  CAS  Google Scholar 

  • Kozlowski G, Metraux JP (1998) Infection of Norway spruce (Picea abies (L.) Karst.) seedlings with Pythium irregulare Buism. and Pythium ultimum Trow.: histological and biochemical responses. Eur J Plant Pathol 104:225–234

    Article  CAS  Google Scholar 

  • Kumar A, Reeja ST, Suseela Bhai R, Shiva KN (2008) Distribution of Pythium myriotylum Drechsler causing soft rot of ginger. J Spices Aromat Crops 17(1):5–10

    Google Scholar 

  • Latijnhouwers M, de Wit PJ, Govers F (2003) Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol 11(10):462–469

    Article  CAS  PubMed  Google Scholar 

  • Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11(7):R73

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Machin Y, Hernández C, Martínez D, Alfonso J (2008) Characterization of the proteases secreted by the rice pathogenic fungus Pyricularia grisea. Biotecnología Aplicada 25:111–116

    CAS  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1972) Use of dinitrosalicylic acid for determination of reducing sugar. Anal Chem 31:426–428

    Article  Google Scholar 

  • Moore LD, Couch HB (1968) Influence of calcium nutrition on pectolytic and cellulolytic enzyme activity of extracts of highland bentgrass foliage blighted by Pythium ultimum. Phytopathology 58:833–838

    CAS  Google Scholar 

  • Oliver JP, Castro A, Gaggero C, Cascón T, Schmelz EA, Castresana C, Ponce de León I (2009) Pythium infection activates conserved plant defense responses in mosses. Planta 230:569–579

    Article  CAS  PubMed  Google Scholar 

  • Phalip V, Goubet F, Carapito R, Jeltsc JM (2009) Plant cell wall degradation with a powerful Fusarium graminearum enzymatic arsenal. J Microbiol Biotechnol 19(6):573–581

    CAS  PubMed  Google Scholar 

  • Prins TW, Tudzynski P, Von Tiedemann A, Tudzynski B, Ten Have A, Hansen ME, Tenberge K, Van Kan JAL (2000) Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In: Kronstad J (ed) Fungal pathology. Kluwer Academic Publishers, Dordrecht, pp 33–64

    Chapter  Google Scholar 

  • Riou C, Freyssinet G, Fevre M (1991) Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl Environ Microbiol 57(5):1478–1484

    CAS  PubMed  Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Ex Bot 60:3615–3635

    Article  CAS  Google Scholar 

  • Sasikumar B, Thankamani CK, Srinivasan V, Devasahayam S, Eapen SJ, Kumar A, Zachariah TJ (2008) Ginger (Extension Pamphlet) Srinivasan V et al (Eds), Indian Institute of Spices Research, Calicut, p 1–14

  • Shan W, Marshall JS, Hardham AR (2004) Stage specific expression of genes in germinated cysts of Phytophthora nicotianae. Mol Plant Pathol 5:317–330

    Article  CAS  PubMed  Google Scholar 

  • Soylu S (2004) Ultrastructural characterisation of the host–pathogen interface in white blister-infected Arabidopsis leaves. Mycopathologia 158:457–464

    Article  PubMed  Google Scholar 

  • Soylu EM, Soylu S (2003) Light and electron microscopy of the compatible interaction between Arabidopsis and the downy mildew pathogen Peronospora parasitica. J Phytopath 151:300–306

    Article  Google Scholar 

  • Staples RC, Mayer AM (2003) Suppression of host resistance by fungal plant pathogens. Isr J Plant Sci 51:173–184

    Article  CAS  Google Scholar 

  • ten Have A, Tenberge KB, Benen JAE, Tudzynski P, Visser J, van Kan JAL (2002) The contribution of the cell wall degrading enzymes to pathogenesis of fungal plant pathogens. In: Kempken F (ed) The Mycota XI, agricultural applications. Springer, Berlin, pp 341–358

    Chapter  Google Scholar 

  • Tompkins CM, Ark PA, Tucker CM, Middleton JT (1939) Soft rot of pumpkin and watermelon fruits caused by Pythium ultimum. J Agric Res 58(6):461–475

    Google Scholar 

  • Tonukari NJ (2003) Enzymes and fungal virulence. J Appl Sci Environ Manage 7(1):5–8

    CAS  Google Scholar 

  • Torto-Alalibo T, Meng S, Dean RA (2009) Infection strategies of filamentous microbes described with the Gene Ontology. Trends Microbiol 17(7):320–327

    Article  CAS  PubMed  Google Scholar 

  • Toth IK, Birch PR (2005) Rotting softly and stealthily. Curr Opin Plant Biol 8:424–429

    Article  CAS  PubMed  Google Scholar 

  • Tyler BM (2002) Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu Rev Phytopathol 40:137–167

    Article  CAS  PubMed  Google Scholar 

  • van de Peer Y, De Wachter R (1997) Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. J Mol Evol 45:619–630

    Article  PubMed  Google Scholar 

  • van der Plaats-Niterink AJ (1981) Monograph of the genus Pythium. Stud Mycol 21:1–242

    Google Scholar 

  • van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11(5):1360–1385

    Google Scholar 

  • Walton JD (1994) Deconstructing the cell wall. Plant Physiol 104:1113–1118

    CAS  PubMed  Google Scholar 

  • Weiland JJ (2004) Production of protease isozymes by Aphanomyces cochlioides and Aphanomyces euteiches. Physiol Mol Plant Pathol 65:225–233

    Article  CAS  Google Scholar 

  • Winstead NN, McCombs CL (1961) Pectinolytic and cellulolytic enzyme production by Pythium aphanidermatum. Phytopathology 51:270–273

    CAS  Google Scholar 

  • Wood RKS, Gupta SC (1958) Studies in the physiology of parasitism. XXV—some properties of the pectic enzymes secreted by Pythium debaryanum. Ann Bot 22:309–319

    CAS  Google Scholar 

  • Yakoby N, Kobiler I, Dinoor A, Prusky D (2000) pH regulation of pectate lyase secretion modulates the attack of Colletotrichum gloeosporioides on avocado fruits. Appl Environ Microbiol 66:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Zamski E, Peretz I (1995) Cavity spot of carrots: interaction between the host and pathogen, related to the cell wall. Ann Appl Biol 127:23–32

    Article  Google Scholar 

  • Zamski E, Peretz I (1996) Cavity spot of carrots: II. Cell wall-degrading enzymes secreted by Pythium and pathogen-related proteins produced by the root cells. Ann Appl Biol 128:195–207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GC and RAK acknowledges the research fellowship received from MHRD (Ministry of Human Resource and Development, Govt. of India) and Department of Biotechnology (DBT; No: BT/PR13248/GBD/27/232/2009), Govt. of India respectively. The financial support provided under Faculty Research Grant (FRG) scheme (No. NITC/Dean(C&SR)/FRG10/0112) of NITC is duly acknowledged by ANR. We gratefully acknowledge Dr. George Thomas, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India for providing us with P. myriotylum strain (RGCBN14).Authors also gratefully acknowledge the unknown reviewers for the helpful comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Aswati Nair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geethu, C., Resna, A.K. & Nair, R.A. Characterization of major hydrolytic enzymes secreted by Pythium myriotylum, causative agent for soft rot disease. Antonie van Leeuwenhoek 104, 749–757 (2013). https://doi.org/10.1007/s10482-013-9983-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9983-4

Keywords

Navigation