Skip to main content
Log in

Influence of pH and temperature on the expression of sboA and ituD genes in Bacillus sp. P11

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Temperature and pH are key factors influencing the production of antimicrobial peptides. In this work, qRT-PCR methodology was used to demonstrate the effect of these two variables on sboA (subtilosin A) and ituD (iturin A) expression in Bacillus sp. P11, an isolate from aquatic environment of the Amazon. Bacillus sp. P11 was incubated in BHI broth for 36 h at 30, 37 and 42 °C, and the pH values were 6.0, 7.4 and 8.0. The production of subtilosin A and iturin A was confirmed by mass spectrometry. The sboA expression increased 200-fold when the initial pH was 8.0. In contrast, ituD expression was maximum at pH 6.0. Increased temperature (42 °C) was adverse for both genes, but ituD expression increased at 37 °C. Expression of sboA and ituD was strongly affected by pH and temperature and qRT-PCR proved to be a powerful tool to investigate the potential of Bacillus strains to produce subtilosin A and iturin A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aasen IM, Moretro T, Katla T, Axelsson L, Storro L (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl Microbiol Biotechnol 53:159–166

    Article  PubMed  CAS  Google Scholar 

  • Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603

    PubMed  CAS  Google Scholar 

  • Caldeira AT, Feio SS, Arteiro JMS, Coelho AV, Roseiro JC (2008) Environmental dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen patterns. J Appl Microbiol 104:808–816

    Article  PubMed  CAS  Google Scholar 

  • Caldeira AT, Arteiro JMS, Coelho AV, Roseiro JC (2011) Combined use of LC-ESI-MS and antifungal tests for rapid identification of bioactive lipopeptides produced by Bacillus amyloliquefaciens CCMI 1051. Process Biochem 46:1738–1746

    Article  CAS  Google Scholar 

  • Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL (2008) Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol 47:180–186

    Article  PubMed  CAS  Google Scholar 

  • Cooper DG, MacDonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    PubMed  CAS  Google Scholar 

  • Cosby WM, Vollenbroich D, Lee OH, Zuber P (1998) Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 180:1438–1445

    PubMed  CAS  Google Scholar 

  • Fickers P, Leclère V, Guez JS, Béchet M, Coucheney F, Joris B, Jacques P (2008) Temperature dependence of mycosubtilin homologue production in Bacillus subtilis ATCC 6633. Res Microbiol 159:449–457

    Article  PubMed  CAS  Google Scholar 

  • Guez JS, Müller CH, Danze PM, Büchs J, Jacques P (2008) Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC 6633. J Biotechnol 134:121–126

    Article  PubMed  CAS  Google Scholar 

  • Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693–698

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Geng H, Miyapuran VR, Sit CS, Vederas JC, Nakano MM (2009) Isolation of a variant of subtilosin A with hemolytic activity. J Bacteriol 191:5690–5696

    Article  PubMed  CAS  Google Scholar 

  • Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166

    Article  PubMed  CAS  Google Scholar 

  • Kawulka KE, Sprules T, Diaper CM, Randy MW, McKay RT, Mercier P, Zuber P, Vederas JC (2004) Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtillis with unusual sulfur to a-carbon cross-links: formation and reduction of a thio-α-amino acid derivates. Biochemistry 43:3385–3395

    Article  PubMed  CAS  Google Scholar 

  • Leães FL, Vanin NG, Sant’Anna V, Brandelli A (2011) Use of byproducts of food industry for production of antimicrobial activity by Bacillus sp. P11. Food Bioprocess Technol 4:822–828

    Article  Google Scholar 

  • Maqueda M, Sánchez-Hidalgo M, Fernández M, Montalban-López M, Valdivia E, Martínez-Bueno M (2008) Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev 32:2–22

    Article  PubMed  CAS  Google Scholar 

  • Motta AS, Brandelli A (2008) Evaluation of environmental conditions for production of bacteriocin-like substance by Bacillus sp. strain P34. World J Microbiol Biotechnol 24:641–646

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  PubMed  CAS  Google Scholar 

  • Peixoto SB, Cladera-Olivera F, Daroit DJ, Brandelli A (2011) Cellulase-producing Bacillus strains isolated from the intestine of Amazon basin fish. Aquac Res 42:887–891

    Article  CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  • Roongsawang N, Washio K, Morikawa M (2011) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12:141–172

    Article  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  PubMed  CAS  Google Scholar 

  • Stein T (2008) Whole-cell matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of bacteriocin/lanthibiotic-producing bacteria. Rapid Commun Mass Spectr 22:1146–1152

    Article  CAS  Google Scholar 

  • Stein T, Düsterhus S, Stroh A, Entian KD (2004) Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol 70:2349–2353

    Article  PubMed  CAS  Google Scholar 

  • Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol 104:1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183:6265–6273

    Article  PubMed  CAS  Google Scholar 

  • Volpon L, Tsan P, Majer Z, Vass E, Hollósi M, Noguéra V, Lancelin JM, Besson F (2007) NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics. Spectrochim Acta A Mol Biomol Spectrosc 67:1374–1381

    Article  PubMed  Google Scholar 

  • Yao S, Gao X, Fuchsbauer N, Hillen W, Vater J, Wang J (2003) Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Curr Microbiol 47:272–277

    Article  PubMed  CAS  Google Scholar 

  • Zheng G, Hehn R, Zuber P (2000) Mutational analysis of sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol 182:3266–3273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work received financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leães, F.L., Velho, R.V., Caldas, D.G.G. et al. Influence of pH and temperature on the expression of sboA and ituD genes in Bacillus sp. P11. Antonie van Leeuwenhoek 104, 149–154 (2013). https://doi.org/10.1007/s10482-013-9935-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9935-z

Keywords

Navigation