Skip to main content
Log in

Microbial diversity in the coralline sponge Vaceletia crypta

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Coralline sponges of the genus Vaceletia are regarded as ‘living fossils’, the only recent members of the so-called ‘sphinctozoan-type’ sponges that contributed to reef-building during the Palaeozoic and Mesozoic eras. Vaceletia species were thought to be extinct until the discovery of Vaceletia crypta in the 1970s. Here, we used molecular methods to provide first insights into the microbial diversity of these coralline sponges. Both denaturing gradient gel electrophoresis (DGGE) analyses of 19 Vaceletia specimens and the analysis of 427 clones from a bacterial 16S rRNA gene clone library of a specimen of V. crypta from the Great Barrier Reef (Australia) revealed high diversity and a complex composition with a relatively uniform phylogenetic distribution. Only a single archaeal 16S rRNA phylotype was recovered. The most abundant bacteria were the Chloroflexi (35 %). Of the microbial community, 58 % consisted of the Gammaproteobacteria, Gemmatimonadetes, Actinobacteria, Nitrospira, Deltaproteobacteria, Deferribacteres and Acidobacteria, with nearly equal representation. Less abundant members of the microbial community belonged to the Alphaproteobacteria (3 %), as well as to the Poribacteria, Betaproteobacteria, Cyanobacteria, Spirochaetes, Bacteroidetes, Deinococcus-Thermus and Archaea (all together 4 %). Of the established 96 OTUs, 88 % were closely related to other sponge-derived sequences and thereof 71 OTUs fell into sponge- or sponge-coral specific clusters, which underscores that the “living fossil” coralline sponge Vaceletia shares features of its microbial community with other sponges. The DGGE cluster analysis indicated distinct microbial communities in the different growth forms (solitary and colonial) of Vaceletia species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bayer K, Schmitt S, Hentschel U (2008) Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environ Microbiol 10:2942–2955

    Article  PubMed  CAS  Google Scholar 

  • Blunt J, Copp B, Munro M, Northcote PT, Prinsep M (2004) Marine natural products. Nat Prod Rep 21:1–49

    Article  PubMed  CAS  Google Scholar 

  • Boyle JS, Lew AM (1995) An inexpensive alternative to glassmilk for DNA purification. Trends Genet 11:8

    Article  PubMed  CAS  Google Scholar 

  • Burja A, Hill R (2001) Microbial symbionts of the Australian Great Barrier reef sponge, Candidaspongia flabellata. Hydrobiologia 461:41–47

    Article  Google Scholar 

  • Chombard C, Boury-Esnault N, Tillier A, Vacelet J (1997) Polyphyly of “Sclerosponges”(Porifera, Demospongiae) supported by 28S ribosomal sequences. The Biological Bulletin 193:359–367

    Article  PubMed  CAS  Google Scholar 

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci 345:101–118

    Article  PubMed  CAS  Google Scholar 

  • DeLong E (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  PubMed  CAS  Google Scholar 

  • Dotzauer C, Ehrmann MA, Vogel RF (2002) Occurence and detection of Thermoanaerobacterium and Thermoanaerobacter in canned food. Food Technol Biotechnol 40:21–26

    Google Scholar 

  • Erpenbeck D, McCormack GP, Breeuwer JA, van Soest RW (2004) Order level differences in the structure of partial LSU across demosponges (Porifera): new insights into an old taxon. Mol Phylogenet Evol 32:388–395

    Article  PubMed  CAS  Google Scholar 

  • Erwin DH, Laflamme M, Tweedt SM, Sperling E, Pisani D, Peterson K (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097

    Article  PubMed  CAS  Google Scholar 

  • Erwin PM, López-Legentil S, González-Pech R, Turon X (2012) A specific mix of generalists: bacterial symbionts in Mediterranean Ircinia spp. FEMS Microbiol Ecol 79:619–637

    Article  PubMed  CAS  Google Scholar 

  • Fiedler H, Bruntner C, Bull AT, Ward A, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek 87:37–42

    Article  PubMed  CAS  Google Scholar 

  • Friedrich A, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fuorescence in situ hybridization (FISH). Mar Biol 134:461–470

    Article  Google Scholar 

  • Friedrich A, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–115

    Article  CAS  Google Scholar 

  • Hardoim C, Costa R, Araujo F, Hajdu E, Peixoto R, Lins U, Rosado A, Van Elsas J (2009) Diversity of bacteria in the Marine sponge Aplysina fulva in Brazilian coastal waters. Appl Environ Microbiol 75:3331–3343

    Article  PubMed  CAS  Google Scholar 

  • Hartman WD (1969) New genera and species of coralline sponges (Porifera) from Jamaica. Postilla 137:1–39

    Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich A, Wagner M, Hacker J, Moore B (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. In: Weg M (ed) Molecular marine biology of sponges. Springer, Heidelberg, pp 60–88

    Google Scholar 

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann F, Larsen O, Thiel V, Rapp H, Pape T, Michaelis W, Reitner J (2005) An anaerobic world in sponges. Geomicrobiol J 22:1–10

    Article  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  • Jensen P, Mincer T, Williams P, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87:43–48

    Article  PubMed  CAS  Google Scholar 

  • Kennedy J, Codling CE, Jones BV, Dobson ADW, Marchesi JR (2008) Diversity of microbes associated with the marine sponge, Haliclona simulans, isolated from Irish waters and identification of polyketide synthase genes from the sponge metagenome. Environ Microbiol 10:1888–1902

    Article  PubMed  CAS  Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Li Z, He L, Wu J, Jiang Q (2006) Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J Exp Mar Biol Ecol 329:75–85

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Manz W, Arp G, Schumann-Kindel G, Szewzyk U, Reitner J (2000) Widefield deconvolution epifluorescence microscopy combined with fluorescence in situ hybridization reveals the spatial arrangement of bacteria in sponge tissue. J Microbiol Methods 40:125–134

    Article  PubMed  CAS  Google Scholar 

  • Moyer C, Tiedje J, Dobbs F, Karl D (1998) Diversity of deep-sea hydrothermal vent Archaea from Loihi Seamount, Hawaii. Deep-Sea Res Part II 45:303–317

    Article  CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Elwyn S, Moran N (1999) Calibrating bacterial evolution. Proc Natl Acad Sci USA 96:12638–12643

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Queinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Wörheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:1–7

    Article  Google Scholar 

  • Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 9:e1000602. doi:1000610.1001371/journal.pbio.1000602

    Article  PubMed  CAS  Google Scholar 

  • Pick K, Philippe H, Schreiber F, Erpenbeck D, Jackson D, Wrede P, Wiens M, Alie A, Morgenstern B, Manuel M, Wörheide G (2010) Improved phylogenomic taxon sampling noticeably affects non-bilaterian relationships. Mol Biol Evol 27:1983–1987

    Article  PubMed  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Gloeckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  PubMed  CAS  Google Scholar 

  • Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    PubMed  CAS  Google Scholar 

  • Reiswig HM (1981) Partial carbon and energy budgets of the bacteriosponge Verongia fistularis (Porifera: Demospongiae) in Barbados. Mar Ecol 2:273–293

    Article  CAS  Google Scholar 

  • Reitner J (1992) “Coralline Spongien”. Der Versuch einer phylogenetisch taxonomischen analyse. Berliner Geowissenschaftliche Abhandlungen, Reihe (E) Palaeobiologie 1:1–352

  • Reitner J, Wörheide G (2002) Non-lithistid fossil Demospongiae—origins of their palaeobiodiversity and highlights in history of preservation. In: Hooper JNA, Soest RWMV (eds) Systema porifera. A guide to the classification of sponges. Kluwer Academic/Plenum, New York, pp 1377–1385

    Google Scholar 

  • Reitner J, Wörheide G, Lange R, Schumann-Kindel G (2001) Coralline demosponges—a geobiological portrait. Bulletin of the Tohoku University Museum 1:219–235

    Google Scholar 

  • Salomon C, Magarvey N, Sherman D (2004) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning—a laboratory manual, 3rd edn. Cold Spring Harbor (Cold Spring Harbor Laboratory), New York

    Google Scholar 

  • Schäfer (2001) Denaturing gradient gel electrophoresis. Universität Bremen(DGGE) in microbial ecology. PhD Thesis

  • Schloss P, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, Lesniewski R, Oakley B, Parks D, Robinson C (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E, Obraztsova A, Davidson S, Faulkner D, Haygood M (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol 136:969–977

    Article  CAS  Google Scholar 

  • Schmitt S, Deines P, Behnam F, Wagner M, Taylor M (2011) Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiol Ecol 78:497–510

    Article  PubMed  CAS  Google Scholar 

  • Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp P, Vacelet J, Webster N, Hentschel U, Taylor M (2012) Assessing the complex sponge Microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576

    Article  PubMed  CAS  Google Scholar 

  • Schneemann I, Nagel K, Kajahn I, Labes A, Wiese J, Imhoff J (2010) Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea. Appl Environ Microbiol 76:3702–3714

    Article  PubMed  CAS  Google Scholar 

  • Schumann-Kindel G, Bergbauer M, Manz W, Szewzyk U, Reitner J (1997) Aerobic and anaerobic microorganisms in modern sponges: a possible relationship to fossilzation-processes. Facies 36:268–272

    Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analysis. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Soja C, Mitchell M, Newton A, Vendetti J, Visaggi C, Antoshkina A, White B (2003) Paleoecology of sponge-? hydroid associations in Silurian microbial reefs. Palaios 18:225–235

    Article  Google Scholar 

  • Spellerberg I, Fedor P (2003) A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Glob Ecol Biogeogr 12:177–179

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130

    Article  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW, Tsai P, Simister RL, Deines P, Botte E, Ericson G, Schmitt S, Webster NS (2012) ‘Sponge-specific’ bacteria are widespread (but rare) in diverse marine environments. ISME J. doi:10.1038/ismej.2012.111

    Google Scholar 

  • Thiel V, Leininger S, Schmaljohann R, Bruemmer F, Imhoff JF (2007) Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microb Ecol 54:101–111

    Article  PubMed  Google Scholar 

  • Vacelet J (1977) Une nouvelle relique du secondaire: une representant actuel des sponges fossiles Sphinctozoaires. C R Acad Sci 285:509–511

    Google Scholar 

  • Vacelet J (1985) Coralline sponges and the evolution of Porifera. In: Conway Morris S, George JD, Gibson R, Platt HM (eds) The origin and relationships of lower invertebrates. Clarendon, Oxford, pp 1–13

    Google Scholar 

  • Vacelet J (1988) Colonial growth in a recent Sphinctozoa. Berliner Geowissenschaftliche Abhandlungen, Reihe A 100:49

    Google Scholar 

  • Vacelet J, Cuif JP, Gautret P, Massot M, Richer de Forges B (1992) Un Spongiaire Sphinctozoaire colonial apparent‚ aux constructeurs de récifs triasiques survivant dans le bathyal de Nouvelle-Calédonie. Comptes Rendus De L’Academie Des Sciences, Paris (Biologie Marine, Paléontologie) 314:379–385

  • Webster N, Hill R (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Mar Biol 138:843–851

    Article  CAS  Google Scholar 

  • Webster N, Wilson K, Blackall L, Hill R (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  PubMed  CAS  Google Scholar 

  • Webster N, Negri A, Munro M, Battershill C (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  • Webster N, Taylor M, Behnam F, Lücker S, Rattei T, Whalan S, Horn M, Wagner M (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070–2082

    PubMed  CAS  Google Scholar 

  • Wen A, Fegan M, Hayward C, Chakraborty S, Sly LI (1999) Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Evol Micr 49:567–576

    CAS  Google Scholar 

  • Wörheide G (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific-Micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Facies 38:1–88

    Article  Google Scholar 

  • Wörheide G (2008) A hypercalcified sponge with soft relatives: Vaceletia is a keratose demosponge. Mol Phylogenet Evol 47:433–438

    Article  PubMed  Google Scholar 

  • Wörheide G, Reitner J (1996) “Living fossil” sphinctozoan coralline sponge colonies in shallow water caves of the Osprey Reef (Coral Sea) and the Astrolabe Reefs (Fiji Islands). Globale und regionale Steuerungsfaktoren biogener Sedimentation. Göttinger Arbeiten zur Geologie und Paläontologie SB2 (University of Göttingen: Germany):145–148

Download references

Acknowledgments

Funding for this study was provided by the German Research Foundation (DFG-Wo896/7-1 “Deep Downunder, www.deepdownunder.de). We are very grateful to Sergio Vargas (Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Germany) for help during the preparation of this manuscript. We thank Volker Glöckner (Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Germany) for support with DGGE software and analysis. We thank Susanne Schmitt (Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Germany) for helpful comments on the manuscript. We thank Alina Gerlée (Department of Geoecology, Faculty of Geography and Regional Studies, University of Warsaw, Poland) for fruitful discussions on ecological statistics.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Wörheide.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 173 kb)

Supplementary material 2 (PDF 2922 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlińska-Batres, K., Wörheide, G. Microbial diversity in the coralline sponge Vaceletia crypta . Antonie van Leeuwenhoek 103, 1041–1056 (2013). https://doi.org/10.1007/s10482-013-9884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9884-6

Keywords

Profiles

  1. Gert Wörheide