Skip to main content
Log in

Multilocus sequence typing and antimicrobial resistance in Enterococcus faecium isolates from fresh produce

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The purpose of the present study was to determine the relatedness of Enterococcus faecium isolates from fresh produce to E. faecium strains from other sources by using multi-locus sequence typing (MLST) and to determine the antimicrobial resistance of the isolates. MLST analysis of 22 E. faecium isolates from fresh produce revealed 7 different sequence types (ST 22, ST 26, ST 43, ST 46, ST 55, ST 94 and ST 296). Most isolates belonged to ST 296 (40.9 %), followed by ST 94 (27.3 %). All isolates were sensitive to vancomycin and to imipenem, and only one was resistant to ampicillin (MIC 32 mg/l). However, all were resistant to cefotaxime and ceftazidine. E. faecium isolates from fresh produce were inhibited by quaternary compounds (benzalkonium chloride, cetrimide, hexadecylpyridinium chloride, didecyldimethylammonium bromide), biguanides (chlorhexidine), polyguanides [poly-(hexamethylene guanidinium) hydrochloride], bisphenols (triclosan, hexachlorophene) and biocidal solutions of P3 oxonia and P3 topax 66. Didecyldimethylammonium bromide and triclosan were the least effective biocides in growth inhibition, while hexadecylpyridinium chloride was the most effective. Results from MLST typing and antibiotic resistance suggest that the studied E. faecium isolates from fresh produce are not related to the clinically-relevant clonal complex CC17.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Aarestrup FM, Hasman H (2004) Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substance used for disinfection. Vet Microbiol 100:83–89

    Article  CAS  PubMed  Google Scholar 

  • Abriouel H, Ben Omar N, Cobo Molinos A, Lucas López R, Grande MJ, Martínez-Viedma P, Ortega E, Martínez Cañamero M, Gálvez A (2008) Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. Int J Food Microbiol 123:38–49

    Article  CAS  PubMed  Google Scholar 

  • Arias CA, Murray BE (2012) The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beier RC, Duke SE, Ziprin RL, Harvey RB, Hume ME, Poole TL, Scott HM, Highfield LD, Alali WO, Andrews K, Anderson RC, Nisbet DJ (2008) Antibiotic and disinfectant susceptibility profiles of vancomycin-resistant Enterococcus faecium (VRE) isolated from community wastewater in Texas. Bull Environ Contam Toxicol 80:188–194

    Article  CAS  PubMed  Google Scholar 

  • Blakistone B, Chuyate R, Kautter D, Charbonneau J, Suit K (1999) Efficacy of Oxonia active against selected spore-formers. J Food Protect 63:262–267

    Google Scholar 

  • Braga TM, Pomba C, Lopes MF (2013) High-level vancomycin resistant Enterococcus faecium related to humans and pigs found in dust from pig breeding facilities. Vet Microbiol 161:344–349

    Article  PubMed  Google Scholar 

  • Campos J, Mourão J, Pestana N, Peixe L, Novais C, Antunes P (2013) Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes. Int J Food Microbiol 166:464–470

    Article  PubMed  Google Scholar 

  • Cerf O, Carpentier B, Sanders P (2010) Tests for determining in-use concentrations of antibiotics and disinfectants are based on entirely different concepts: “resistance” has different meanings. Int J Food Microbiol 136:247–254

    Article  CAS  PubMed  Google Scholar 

  • CLSI: Clinical and Laboratory Standards Institute (2011) Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement document M100-S21 nº1, vol 31. Wayne, PA

  • Dubé L, Caillon J, Jacqueline C, Bugnon D, Potel G, Asseray N (2012) The optimal aminoglycoside and its dosage for the treatment of severe Enterococcus faecalis infection. An experimental study in the rabbit endocarditis model. Eur J Clin Microbiol Infect Dis 31:2545–2547

    Article  PubMed  Google Scholar 

  • Food and Drug Administration (2004) Department of health and human services. 21 CFR part 173.375. Federal register/vol. 69 no. 64/friday, april 2, 2004/rules and regulations

  • Fraise AP (2002) Susceptibility of antibiotic-resistant cocci to biocides. J Appl Microbiol 92(Suppl):158S–162S

    Article  PubMed  Google Scholar 

  • Freitas AR, Tedim AP, Novais C, Ruiz-Garbajosa P, Werner G, Laverde-Gomez JA, Cantón R, Peixe L, Baquero F, Coque TM (2010) Global spread of the hyl Efm colonization-virulence gene in megaplasmids of the Enterococcus faecium CC17 polyclonal subcluster. Antimicrob Agents Chemother 54:2660–2665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furtula V, Jackson CR, Farrell EG, Barrett JB, Hiott LM, Chambers PA (2013) Antimicrobial resistance in Enterococcus spp isolated from environmental samples in an area of intensive poultry production. Int J Environ Res Pub Health 10:1020–1036

    Article  CAS  Google Scholar 

  • Gilmore MS, Lebreton F, van Schaik W (2013) Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol 16:10–16

    Article  PubMed  Google Scholar 

  • Giraffa G (2002) Enterococci from foods. FEMS Microbiol Rev 744:1–9

    Google Scholar 

  • Graham JP, Evans SL, Price LB, Silbergeld EK (2009) Fate of antimicrobial resistant enterococci and staphylococci and resistance determinants in stored poultry litter. Environ Res 109:682–689

    Article  CAS  PubMed  Google Scholar 

  • Grande Burgos MJ, Lucas López R, Abriouel H, Ben Omar N, Galvez A (2009) Multilocus sequence typing of Enterococcus faecalis from vegetable foods reveals two new sequence types. Foodborne Pathog Dis 6:321–327

    Article  Google Scholar 

  • Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK (2008) National Healthcare Safety Network Team and participating National Healthcare Safety Network Facilities: NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29:996–1011

    Article  PubMed  Google Scholar 

  • Hollenbeck BL, Rice LB (2012) Intrinsic and acquired resistance mechanisms in Enterococcus. Virulence 3:421–433

    Article  PubMed  Google Scholar 

  • Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden JD, Willems RJ (2002) Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol 40:1963–1971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston LM, Jaykus LA (2004) Antimicrobial resistance of Enterococcus species isolated from produce. Appl Environ Microbiol 70:3133–3137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston LM, Jaykus LA, Moll D, Martinez MC, Anciso J, Mora B, Moe CL (2005) A field study of the microbiological quality of fresh produce. J Food Prot 68:1840–1847

    PubMed  Google Scholar 

  • Kampf G, Kramer A (2004) Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clin Microbiol Rev 17:863–893

    Article  PubMed Central  PubMed  Google Scholar 

  • Klibi N, Ben Slimen N, Fhoula I, López M, Ben Slama K, Daffonchio D, Boudabous A, Torres A, Ouzari H (2012) Genotypic diversity, antibiotic resistance and bacteriocin production of enterococci isolated from rhizospheres. Microbes Environ 27:533–537

    Article  PubMed  Google Scholar 

  • Koluman A, Akan LS, Pınar Çakiroğlu F (2009) Occurrence and antimicrobial resistance of enterococci in retail foods. Food Control 20:281–283

    Article  CAS  Google Scholar 

  • Linden PK, Miller CB (1999) Vancomycin-resistant enterococci: the clinical effect of a common nosocomial pathogen. Diagn Microbiol Infect Dis 33:113–120

    Article  CAS  PubMed  Google Scholar 

  • McDonnel G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    Google Scholar 

  • McGowan LL, Jackson CR, Barrett JB, Hiott LM, Fedorka-Cray PJ (2006) Prevalence and antimicrobial resistance of enterococci isolated from retail fruits, vegetables, and meats. J Food Prot 69:2976–2982

    CAS  PubMed  Google Scholar 

  • Micallef SA, Rosenberg Goldstein RE, George A, Ewing L, Tall BD, Boyer MS, Joseph SW, Sapkota AR (2013) Diversity, distribution and antibiotic resistance of Enterococcus spp. recovered from tomatoes, leaves, water and soil on U.S. Mid-Atlantic farms. Food Microbiol 36:465–474

    Article  CAS  PubMed  Google Scholar 

  • Müller T, Ulrich A, Ott EM, Müller M (2001) Identification of plant-associated enterococci. J Appl Microbiol 91:268–278

    Article  PubMed  Google Scholar 

  • Mundt JO (1961) Occurrence of enterococci on plants: bud, blossom, and soil studies. Appl Microbiol 9:541–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mundt JO (1963) Occurrence of enterococci on plants in a wild environment. Appl Microbiol 11:141–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mundt JO, Coggins JH, Johnson LF (1962) Growth of Streptococcus faecalis var. liquefaciens on plants. Appl Microbiol 10:552–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naser S, Thompson FL, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, Thompson CC, Vancanneyt M, Swings J (2005) Phylogeny and identification of enterococci by atpA gene sequence analysis. J Clin Microbiol 43:2224–2230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogier JC, Serror P (2008) Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 126:291–301

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Morente E, Fernández-Fuentes MA, Grande-Burgos MJ, Abriouel H, Pérez-Pulido R, Gálvez A (2013) Biocide tolerance in bacteria. Int J Food Microbiol 162:13–25

    Article  PubMed  Google Scholar 

  • Ott EM, Muller T, Muller M, Franz CMAP, Ulrich A, Gabel M, Seyfarth L (2001) Population dynamics and antagonistic potential of enterococci colonizing the phyllosphere of grasses. J Appl Microbiol 91:54–66

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Pulido R, Abriouel H, Ben Omar N, Lucas R, Martínez-Cañamero M, Gálvez A (2006) Safety and potential risks of enterococci isolated from traditional fermented capers. Food Chem Toxicol 44:2070–2077

    Article  PubMed  Google Scholar 

  • Peters J, Mac K, Wichmann-Schauer H, Klein G, Ellerbroek L (2003) Species distribution and antibiotic resistance patterns of enterococci isolated from food of animal origin in Germany. Int J Food Microbiol 88:311–314

    Article  CAS  PubMed  Google Scholar 

  • Rice LB, Carias LL, Hutton-Thomas R, Sifaoui F, Gutmann L, Rudin SD (2001) Penicillin-binding protein 5 and expression of ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 45:1480–1486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rice LB, Carias LL, Rudin S, Hutton R, Marshall S, Hassan M, Josseaume N, Dubost L, Marie A, Arthur M (2009) Role of class A penicillin-binding proteins in the expression of β-lactam resistance in Enterococcus faecium. J Bacteriol 191:3649–3656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sánchez Valenzuela A, Benomar N, Abriouel H, Pérez Pulido R, Gálvez A (2012) Characterization of Enterococcus faecalis and Enterococcus faecium from wild flowers. Antonie Van Leeuwenhoek 101:701–711

    Article  PubMed  Google Scholar 

  • Sidhu MS, Sørum H, Holck A (2002) Resistance to quaternary ammonium compounds in food-related bacteria. Microb Drug Resist 8:393–399

    Google Scholar 

  • Suller MT, Russell AD (1999) Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. J Hosp Infect 43:281–291

    Article  CAS  PubMed  Google Scholar 

  • Top J, Willems R, Bonten M (2008) Emergence of CC17 Enterococcus faecium: from commensal to hospital-adapted pathogen. FEMS Immunol Med Microbiol 52:297–308

    Article  CAS  PubMed  Google Scholar 

  • Ueda S, Kuwabara Y (2007) Susceptibility of biofilm Escherichia coli, Salmonella enteritidis and Staphylococcus aureus to detergents and sanitizers. Biocontrol Sci 12:149–153

    Article  CAS  PubMed  Google Scholar 

  • Ulrich A, Müller T (1998) Heterogeneity of plant-associated streptococci as characterised by phenotypic features and restriction analysis of PCR-amplified 16S rDNA. J Appl Microbiol 84:293–303

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela AS, Benomar N, Abriouel H, Cañamero MM, López RL, Gálvez A (2013) Biocide and copper tolerance in enterococci from different sources. J Food Prot 76:1806–1809

    Article  CAS  PubMed  Google Scholar 

  • Vankerckhoven V, Huys G, Vancanneyt M, Snauwaert C, Swings J, Klare I, Witte W, Van Autgaerden T, Chapelle S, Lammens C, Goossens H (2008) Genotypic diversity, antimicrobial resistance, and virulence factors of human isolates and probiotic cultures constituting two intraspecific groups of Enterococcus faecium isolates. Appl Environ Microbiol 74:4247–4255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willems RJL, van Schaik W (2009) Transition of Enterococcus faecium from commensal organism to nosocomial pathogen. Future Microbiol 4:1125–1135

    Article  PubMed  Google Scholar 

  • Willems RJL, Top J, van Schaik W, Leavis H, Bonten M, Sirén J, Hanage WP, Corander J (2012) Restricted gene flow among hospital subpopulations of Enterococcus faecium. MBio 3:e00151–e00212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yazdankhah SP, Scheie AA, Høiby EA, Lunestad B-T, Heir E, Fotland TØ, Naterstad K, Kruse H (2006) Triclosan and antimicrobial resistance in bacteria: an overview. Microb Drug Resist 12:83–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research project P08-AGR-4295 (Junta de Andalucía CICE, FEDER) and University of Jaén (Plan Propio). We also acknowledge the Campus de Excelencia Agroalimentario CeiA3.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mª José Grande Burgos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgos, M.J.G., Aguayo, M.C.L., Pulido, R.P. et al. Multilocus sequence typing and antimicrobial resistance in Enterococcus faecium isolates from fresh produce. Antonie van Leeuwenhoek 105, 413–421 (2014). https://doi.org/10.1007/s10482-013-0073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0073-4

Keywords

Navigation