Skip to main content

Advertisement

Log in

An Lrp-type transcriptional regulator controls expression of the Bacillus subtilis chromate transporter

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The Bacillus subtilis strain 168 genome contains the chr3N-chr3C genes encoding the Chr3N/Chr3C protein pair of the chromate ion transporter (CHR) superfamily. Chr3N/Chr3C confers chromate resistance in Escherichia coli only when both proteins are expressed. Upstream of chr3N is the chrS gene encoding ChrS, a protein with homology to the Lrp/AsnC family of transcriptional regulators. When the chrS-chr3N-chr3C gene cluster was transferred to E. coli, a diminished level of chromate resistance was observed, as compared with E. coli transformants bearing only the chromate resistance genes, which displayed full resistance. These data suggested that the chrS gene product acts as negative regulator. RT-PCR assays demonstrated that expression of chrS diminishes transcription of the chromate resistance genes in E. coli, and that this repression was overcome by chromate. Electrophoretic mobility shift assays showed that purified ChrS protein specifically binds to the 5′ region of chrS. These results indicate that the chr gene cluster forms an operon regulated negatively by ChrS binding to its own gene’s regulatory region, and positively by chromate ions. Sequence analysis revealed similar operons in many Bacillales strains, suggesting some adaptive advantage. This is the first example of a bacterial heavy-metal resistance system controlled by an Lrp-type transcriptional regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baek C-H, Wang S, Roland KL, Curtiss R (2008) Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in Salmonella enterica serovar Typhimurium. J Bacteriol 191:1278–1292

    Article  PubMed  Google Scholar 

  • Baek C-H, Kang HY, Roland KL, Curtiss R (2011) Lrp acts as both a positive and negative regulator for type 1 fimbriae production in Salmonella enterica serovar Typhimurium. PLoS ONE 6:e26896

    Article  PubMed  CAS  Google Scholar 

  • Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol 190:6996–7003

    Article  PubMed  CAS  Google Scholar 

  • Brinkman AB, Dahlke I, Tuininga JE, Lammers T, Dumay V, de Heus E, Lebbink JH, Thomm M, de Vos WM, van der Oost J (2000) An Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus is negatively autoregulated. J Biol Chem 275:38160–38169

    Article  PubMed  CAS  Google Scholar 

  • Brinkman AB, Ettema TJ, de Vos WM, van der Oost J (2003) The Lrp family of transcriptional regulators. Mol Microbiol 48:287–294

    Article  PubMed  CAS  Google Scholar 

  • De los Rios S, Perona JJ (2007) Structure of the Escherichia coli leucine-responsive regulatory protein Lrp reveals a novel octameric assembly. J Mol Biol 366:1589–1602

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Magaña A, Aguilar-Barajas E, Moreno-Sánchez R, Ramírez-Díaz MI, Riveros-Rosas H, Vargas E, Cervantes C (2009) Short-chain chromate ion transporter proteins from Bacillus subtilis confer chromate resistance in Escherichia coli. J Bacteriol 191:5441–5445

    Article  PubMed  Google Scholar 

  • Friedberg D, Midkiff M, Calvo JM (2001) Global versus local regulatory roles for Lrp-related proteins: Haemophilus influenzae as a case study. J Bacteriol 183:4004–4011

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2(2006):0007

    PubMed  Google Scholar 

  • Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2:1849–1861

    Article  PubMed  CAS  Google Scholar 

  • Henne KL, Nakatsu CH, Thompson DK, Konopka AE (2009) High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol 9:199

    Article  PubMed  Google Scholar 

  • Juhnke S, Peitzsch N, Hubener N, Grosse C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25

    Article  PubMed  CAS  Google Scholar 

  • Koike H, Ishijima SA, Clowney L, Suzuki M (2004) The archaeal feast/famine regulatory protein: potential roles of its assembly forms for regulating transcription. Proc Natl Acad Sci USA 101:2840–2845

    Article  PubMed  CAS  Google Scholar 

  • Leonard PM, Smits SH, Sedelnikova SE, Brinkman AB, de Vos WM, van der Oost J, Rice DW, Rafferty JB (2001) Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. EMBO J 20:990–997

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  PubMed  Google Scholar 

  • Tani TH, Khordusky A, Blumenthal RM, Brown PO, Matthews RG (2002) Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc Natl Acad Sci USA 99:13471–13476

    Article  PubMed  CAS  Google Scholar 

  • Thaw P, Sedelnikova SE, Muranova T, Wiese S, Ayora S, Alonso JC, Brinkman AB, Akerboom J, van der Oost J, Rafferty JB (2006) Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Res 34:1439–1449

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work was partially supported by Grants from Consejo Nacional de Ciencia y Tecnología, México (Conacyt, No. 79190), Coordinación de Investigación Científica (UMSNH; No. 2.6), and Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (UNAM; IN216513). Conacyt awarded fellowships to EA-B and RJ-M (postdoctoral) and SJ-A and LAV-R (undergraduate).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cervantes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 73 kb)

Supplementary material 2 (PPT 1206 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar-Barajas, E., Jacobo-Arreola, S., Verduzco-Rosas, L.A. et al. An Lrp-type transcriptional regulator controls expression of the Bacillus subtilis chromate transporter. Antonie van Leeuwenhoek 104, 941–948 (2013). https://doi.org/10.1007/s10482-013-0013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0013-3

Keywords

Navigation