Nonhongiella spirulinensis gen. nov., sp. nov., a bacterium isolated from a cultivation pond of Spirulina platensis in Sanya, China

An Erratum to this article was published on 10 July 2014

Abstract

A Gram-negative, aerobic, motile rod strain, designated Ma-20T, was isolated from a pool of marine Spirulina platensis cultivation, Sanya, China, and was subjected to a polyphasic taxonomy study. Strain Ma-20T can grow in the presence of 0.5–11 % (w/v) NaCl, 10–43 °C and pH 6–10, and grew optimally at 30 °C, pH 7.5–9.0 in natural seawater medium. The polar lipids were composed of phosphatidylethanolamine, three unidentified phospholipids and three unidentified polar lipids. The respiratory quinone was ubiquinone 8 (Q-8) and the major fatty acids were C18:1ω6c/C18:1ω7c (summed feature 8, 32.84 %), C16:1ω6c/C16:1ω7c (summed feature 3, 30.76 %), C16:0 (13.54 %), C12:03-OH (4.63 %), and C12:0 (4.09 %). The DNA G+C content of strain Ma-20T was 58 mol %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Ma-20T belonging to Gammaproteobacteria, it shared 88.46–91.55 and 89.21–91.26 % 16S rRNA gene sequence similarity to the type strains in genus Hahella and Marinobacter, respectively. In addition to the large 16S rRNA gene sequence difference, Ma-20T can also be distinguished from the reference type strains Hahella ganghwensis FR1050T and Marinobacter hydrocarbonoclasticus sp. 17T by several phenotypic characteristics and chemotaxonomic properties. On the basis of phenotypic, chemotaxonomic and phylogenetic properties, strain Ma-20T is suggested to represent a novel species of a new genus in Gammaproteobacteria, for which the name Nonhongiella spirulinensis gen. nov., sp. nov. is proposed. The type strain is Ma-20T (=KCTC 32221T=LMG 27470T).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Baik KS, Seong CN, Kim EM, Yi H, Bae KS, Chun J (2005) Hahella ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 55(2):681–684

    CAS  PubMed  Article  Google Scholar 

  2. Berland BR, Bonin DJ, Maesticini SY (1970) Study of bacteria associated with marine algae in culture III. Organic substrates supporting growth. Mar Biol 5:68–76

    Article  Google Scholar 

  3. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    CAS  PubMed  Article  Google Scholar 

  4. Blinkova LP, Gorobets OB, Baturo AP (2001) Biological activity of Spirulina. Zh Mikrobiol Epidemiol Immunobiol 2:114–118

    PubMed  Google Scholar 

  5. Collins MD (1994) Isoprenoid quinones. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 345–401

    Google Scholar 

  6. Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Scientific Press, Beijing

    Google Scholar 

  7. Doucette GJ (1995) Interactions between bacteria and harmful algae: a review. Nat Toxins 3:65–74

    CAS  PubMed  Article  Google Scholar 

  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Article  Google Scholar 

  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  10. Ferguson RL, Buckley EN, Palumbo AV (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47:49–55

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Fogg GE (1966) The extracellular products of algae. Oceanogr Mar Biol Annu Rev 4:195–212

    CAS  Google Scholar 

  12. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42(4):568–576

    CAS  PubMed  Article  Google Scholar 

  13. Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  14. Giovannoni SJ, Foster RA, Rappé MS, Epstein S (2007) New cultivation strategies bring more microbial plankton species into the laboratory. Oceanography 20(2):62–69

    Article  Google Scholar 

  15. Gutierrez T, Green DH, Whitman WB, Nichols PD, Semple KT, Aitken MD (2012a) Algiphilus aromaticivorans gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from a culture of the marine dinoflagellate Lingulodinium polyedrum, and proposal of Algiphilaceae fam. nov. Int J Syst Evol Microbiol 62(Pt 11):2743–2749

    CAS  PubMed  Article  Google Scholar 

  16. Gutierrez T, Nichols PD, Whitman WB, Aitken MD (2012b) Porticoccus hydrocarbonoclasticus sp. nov., an aromatic hydrocarbon-degrading bacterium identified in laboratory cultures of marine phytoplankton. Appl Environ Microbiol 78(3):628–637

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Gutierrez T, Green DH, Nichols PD, Whitman WB, Semple KT, Aitkena MD (2013) Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl Environ Microbiol 79(1):205–214

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Hahnke S, Tindall BJ, Schumann P, Sperling M, Brinkhoff T, Simon M (2012) Planktotalea frisia gen. nov., sp. nov., isolated from the southern North Sea. J Syst Evol Microbiol 62(Pt 7):1619–1624

    CAS  Article  Google Scholar 

  19. Hahnke S, Tindall BJ, Schumann P, Simon M, Brinkhoff T (2013) Pelagimonas varians gen. nov., sp. nov., isolated from the southern North Sea. Int J Syst Evol Microbiol 63(Pt 3):835–843

    CAS  PubMed  Article  Google Scholar 

  20. Hwang CY, Bae GD, Yih W, Cho BC (2009) Marivita cryptomonadis gen. nov., sp. nov. and Marivita litorea sp. nov., of the family Rhodobacteraceae, isolated from marine habitats. Int J Syst Evol Microbiol 59(Pt 7):1568–1575

    CAS  PubMed  Article  Google Scholar 

  21. Kamekura M (1993) Lipids of extreme halophiles. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 135–161

    Google Scholar 

  22. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    CAS  PubMed  Article  Google Scholar 

  23. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Article  Google Scholar 

  24. Kogure K, Simidu U, Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415–420

    CAS  PubMed  Article  Google Scholar 

  25. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    CAS  Article  Google Scholar 

  26. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  27. Lee HK, Chun J, Moon EY, Ko SH, Lee DS, Lee HS, Bae KS (2001) Hahella chejuensis gen. nov., sp. nov., an extracellular-polysaccharide-producing marine bacterium. Int J Syst Evol Microbiol 51(2):661–666

    CAS  PubMed  Google Scholar 

  28. Lee K, Lee HK, Cho JC (2008) Hahella antarctica sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol 58(Pt 2):353–356

    CAS  PubMed  Article  Google Scholar 

  29. Li Z, Qu Z, Zhang X, Zhang XH (2012) Lentibacter algarum gen. nov., sp. nov., isolated from coastal water during a massive green algae bloom. Int J Syst Evol Microbiol 62(Pt 5):1042–1047

    CAS  PubMed  Article  Google Scholar 

  30. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    CAS  Article  Google Scholar 

  31. Nedashkovskaya OI, Kim SB, Han SK, Lysenko AM, Rohde M, Zhukova NV, Falsen E, Frolova GM, Mikhailov VV, Bae KS (2003) Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm. Int J Syst Evol Microbiol 53(Pt 6):1967–1971

    CAS  PubMed  Article  Google Scholar 

  32. Nedashkovskaya OI, Kim SB, Han SK, Rhee MS, Lysenko AM, Rohde M, Zhukova NV, Frolova GM, Mikhailov VV, Bae KS (2004) Algibacter lectus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from green algae. Int J Syst Evol Microbiol 54(Pt 4):1257–1261

    CAS  PubMed  Article  Google Scholar 

  33. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  34. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. Riquelme CE, Fukami K, Ishida Y (1989) Growth response of bacteria to extracellular products of bloom algae. Nippon Suisan Gakk 55(2):349–355

    CAS  Article  Google Scholar 

  36. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  37. Spröer C, Lang E, Hobeck P, Burghardt J, Stackebrandt E, Tindall BJ (1998) Transfer of Pseudomonas nautica to Marinobacter hydrocarbonoclasticus. Int J Syst Bacteriol 48:1445–1448

    Article  Google Scholar 

  38. Straškrabová V, Fuksa J (1982) Diel changes in numbers and activities of bacterioplankton in a reservoir in relation to algal production. Limnol Oceanogr 27(4):660–672

    Article  Google Scholar 

  39. Swofford DL (1993) PAUP: phylogenetic analysis using parsimony, version 3.1.1. Illinois Natural History Survey, Champaign

    Google Scholar 

  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    CAS  Article  Google Scholar 

  42. Vatsala TM, Rekha R, Srividhya R (2011) Novel substrate (algal protein) for cultivation of Rhodospirillum rubrum. Indian J Exp Biol 49(10):773–780

    CAS  PubMed  Google Scholar 

  43. Wang CY, Ng CC, Tzeng WS, Shyu YT (2009) Marinobacter szutsaonensis sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 59(10):2605–2609

    CAS  PubMed  Article  Google Scholar 

  44. Whittaker RH, Feeney PP (1971) Allelochemics: chemical interactions between species. Science 171:757–770

    CAS  PubMed  Article  Google Scholar 

  45. Williams PJ (1975) Biological and chemical aspects of dissolved organic material in sea water. In: Riely JP, Skirrow G (eds) Chemical oceanography. Academic Press, London, pp 301–363

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (No. 2010CB833801), the National Natural Science Foundation of China (Nos. 41206136, 41230962), Guangdong Province and Chinese Academy of Science cooperation Foundation (2012B091100276), Funds for marine renewable energy (GHME2011SW04), Public science and technology research funds projects of ocean (201005031-5), Provincial Collaborative Foundation Project of Guangdong (9351007002000001).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wenzhou Xiang or Xiang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 699 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, G., Fan, J., Wu, H. et al. Nonhongiella spirulinensis gen. nov., sp. nov., a bacterium isolated from a cultivation pond of Spirulina platensis in Sanya, China. Antonie van Leeuwenhoek 104, 933–939 (2013). https://doi.org/10.1007/s10482-013-0012-4

Download citation

Keywords

  • Nonhongiella spirulinensis
  • Spirulina platensis
  • Chemotaxonomy
  • 16S rDNA based phylogeny