Skip to main content
Log in

Vesicle trafficking via the Spitzenkörper during hyphal tip growth in Rhizoctonia solani

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Growing hyphae of Rhizoctonia solani were stained with the endocytic marker dye FM4-64 and imaged by confocal microscopy. Staining of the plasma membrane was followed by labeling of organelles in the cytoplasm (after ~1 min) and of the Spitzenkörper (Spk; after ~2 min). Fluorescence recovery after photobleaching (FRAP) of the stained Spk demonstrated the vectorial flow of secretory vesicles from the apical cytoplasm to the Spk. This flux was modelled in a two-compartment model. The turnover time of the vesicles of the Spk was estimated to be 1.3–2.5 min. These results are roughly consistent with the expected flux of vesicles through the Spk based on the number of secretory vesicles within the Spk and the number of secretory vesicles that would be necessary to fuse with the apical plasma membrane to maintain hyphal extension rates. These results suggest that membrane retrieval via endocytosis is not as significant as previously suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araujo-Bazán L, Peñalva MA, Espeso EA (2008) Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 67:891–905

    Article  PubMed  Google Scholar 

  • Bartnicki-Garcia S (1990) Role of vesicles in apical growth and a new mathematical model of hyphal morphogenesis. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, San Diego, pp 211–232

    Google Scholar 

  • Bartnicki-Garcia S (1994) Determinants of fungal cell wall morphology: the vesicle supply center. Can J Bot 73:S372–S378

    Article  Google Scholar 

  • Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    Article  PubMed  CAS  Google Scholar 

  • Bourett TM, Howard RJ (1991) Ultrastructural immunolocalization of actin in a fungus. Protoplasma 163:199–202

    Article  Google Scholar 

  • Bourett TM, James SW, Howard RJ (2007) The endomembrane system of the fungal cell. In: Howard RJ, Gow NAR (eds) The Mycota VIII, biology of the fungal cell. Springer, Heidelberg, pp 1–47

    Chapter  Google Scholar 

  • Bracker CE, Herrera JR, Bartnicki-Garcia S (1976) Structure and transformation of chitin synthetase particles (chitosomes) during microfibril synthesis in vitro. Proc Natl Acad Sci USA 73:4570–4574

    Article  PubMed  CAS  Google Scholar 

  • Bracker CE, Murphy DJ, Lopez-Franco R (1997) Laser microbeam manipulation of cell morphogenesis in growing fungal hyphae. Proceedings of SPIE 2983:67–80

    Article  Google Scholar 

  • Churchward MA, Rogasevskaia T, Höfgen J, Bau J, Coorssen JR (2005) Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion. J Cell Sci 118:4833–4848

    Article  PubMed  CAS  Google Scholar 

  • Crampin H et al (2005) Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. J Cell Sci 118:2935–2947

    Article  PubMed  CAS  Google Scholar 

  • Czymmek KJ, Bourett TM, Howard RJ (1996) Immunolocalization of tubulin and actin in thick-sectioned fungal hyphae after freeze-substitution fixation and methacrylate de-embedment. J Microsc 181:153–161

    Article  CAS  Google Scholar 

  • Dijksterhuis J (2003) Confocal microscopy of Spitzenkörper dynamics during growth and differentiation of rust fungi. Protoplasma 222:53–59

    Article  PubMed  CAS  Google Scholar 

  • Fisher-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM 4–64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259

    Article  Google Scholar 

  • Freitag M, Hickey PC, Raju NB, Selker EU, Read ND (2004) GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 41:897–910

    Article  PubMed  CAS  Google Scholar 

  • Fuchs U, Steinberg G (2005) Endocytosis in the plant-pathogenic fungus Ustilago maydis. Protoplasma 226:75–80

    Article  PubMed  CAS  Google Scholar 

  • Fuchs U, Hause G, Schuchardt I, Steinberg G (2006) Endocytosis is essential for pathogenic development in the corn smut fungus Ustilago maydis. Plant Cell 18:2066–2081

    Article  PubMed  CAS  Google Scholar 

  • Girbardt M (1957) Der Spitzenkörper von Polystictus versicolor. Planta 50:47–59

    Article  Google Scholar 

  • Girbardt M (1969) Die ultrastruktur der apikalregion von pilzhyphen. Protoplasma 67:413–441

    Article  Google Scholar 

  • Grove SN, Bracker CE (1970) Protoplasmic organisation of hyphal tips among fungi: vesicles and Spitzenkörper. J Bacteriol 104:989–1009

    PubMed  CAS  Google Scholar 

  • Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M (2005) Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 4:225–229

    Article  PubMed  CAS  Google Scholar 

  • Heath IB, Bonham M, Akram A, Gupta GD (2003) The interrelationships of actin and hyphal tip growth in the ascomycete Geotrichum candidum. Fungal Genet Biol 38:85–97

    Article  Google Scholar 

  • Hickey PC, Swift SR, Roca MG, Read ND (2005) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. In: Savidge T, Pothoulakis C (eds) Methods in microbiology. Microbial imaging, vol 35. Elsevier, London, pp 63–87

    Google Scholar 

  • Hoch HC, Howard RJ (1980) Ultrastructure of freeze-substituted hyphae of the basidiomycete Laetisaria arvalis. Protoplasma 103:281–297

    Article  Google Scholar 

  • Hoffman J, Mendgen K (1998) Endocytosis and membrane turnover in the germ tube of Uromyces fabae. Fungal Genet Biol 24:77–85

    Article  Google Scholar 

  • Hohmann-Marriott MF, Uchida M, van de Meene AML, Garrett M, Hjelm BE, Kokoori S, Roberson RW (2006) Application of electron tomography to fungal ultrastructure studies. New Phytol 172:208–220

    Article  PubMed  Google Scholar 

  • Howard RJ, Aist JR (1980) Cytoplasmic microtubules and fungal morphogenesis: ultrastructural effects of methyl benzimidazole-2-ylcarbamate determined by freeze-substitution of hyphal tip cells. J Cell Biol 87:55–64

    Article  PubMed  CAS  Google Scholar 

  • Jin H, McCaffery JM, Grote E (2008) Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast. J Cell Biol 180:813–826

    Article  PubMed  CAS  Google Scholar 

  • Jones GJ (1984) On estimating freezing times during tissue rapid freezing. J Microsc 136:349–360

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, Galway ME, Mulder BM, Emons AMC (2008) Rates of exocytosis and endocytosis in Arabidopsis root hairs and pollen tubes. J Microsc 231:265–273

    Article  PubMed  CAS  Google Scholar 

  • Köhli M, Galati V, Boudier K, Roberson RW, Philippsen P (2008) Growth-speed-correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips. J Cell Sci 121:3878–3889

    Article  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nature Cell Biol 5:S7–S14

    Article  Google Scholar 

  • López-Franco RM, Bracker CE (1996) Diversity and dynamics of the Spitzenkörper in growing hyphal tips of higher fungi. Protoplasma 195:90–111

    Article  Google Scholar 

  • Peñalva MA (2005) Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genet Biol 42:963–975

    Article  PubMed  Google Scholar 

  • Read ND, Hickey PJ (2001) The vesicle trafficking network and tip growth in fungal hyphae. In: Geitmann A, Cresti M, Heath IB (eds) Cell biology of plant and fungal tip growth. IOS Press, Amsterdam, pp 137–148

    Google Scholar 

  • Read ND, Kalkman ER (2003) Does endocytosis occur in fungal hyphae? Fungal Genet Biol 39:199–203

    Article  PubMed  CAS  Google Scholar 

  • Reynaga-Peña CG, Gierz G, Bartnicki-Garcia S (1997) Analysis of the role of the Spitzenkörper in fungal morphogenesis by computer simulation of apical branching in Aspergillus niger. Proc Natl Acad Sci USA 94:9096–9101

    Article  PubMed  Google Scholar 

  • Riquelme M, Reynaga- Peña CG, Gierz G, Bartnicki-Garcia S (1998) What determines growth direction in fungal hyphae? Fungal Genet Biol 24:101–109

    Article  PubMed  CAS  Google Scholar 

  • Riquelme M, Gierz G, Bartnicki-García S (2000) Dynein and dynactin deficiencies affect the formation and function of the Spitzenkörper and distort hyphal morphogenesis of Neurospora crassa. Microbiology 146:1743–1752

    PubMed  CAS  Google Scholar 

  • Riquelme M, Roberson RW, McDaniel DP, Bartnicki-García S (2002) The effects of ropy-1 mutation on cytoplasmic organization and intracellular motility in mature hyphae of Neurospora crassa. Fungal Genet Biol 37:171–179

    Article  PubMed  CAS  Google Scholar 

  • Riquelme M, Bartnicki-Garcia S, González-Prieto JM, Sánchez-León E, Verdin-Ramos JA, Beltrán-Aguilar A, Freitag M (2007) Spitzenkörper localization and intracellular traffic of green fluorescent protein-labelled CHS-3 and CHS-6 chitin synthase in living hyphae of Neurospora crassa. Eukaryot Cell 6:1853–1864

    Article  PubMed  CAS  Google Scholar 

  • Roberson RW (1992) The actin cytoskeleton in hyphal cells of Sclerotium rolfsii. Mycologia 84:41–51

    Article  CAS  Google Scholar 

  • Roberson RW, Fuller MS (1988) Ultrastructural aspects of the hyphal tip of Sclerotium rolfsii preserved by freeze substitution. Protoplasma 146:143–149

    Article  Google Scholar 

  • Sánchez-Ferrero JC, Peñalva MA (2008) Endocytosis. In: Goldman GH, Osmani SA (eds) The Aspergilli. Genomics, medical, aspects biotechnology and research methods. CRC Press, Taylor and Francis, Boca Raton, pp 177–195

    Google Scholar 

  • Steinberg G (2007a) Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryot Cell 6:351–360

    Article  PubMed  CAS  Google Scholar 

  • Steinberg G (2007b) On the move: endosomes in fungal growth and pathogenicity. Nature Rev Microbiol 5:309–316

    Article  CAS  Google Scholar 

  • Taheri-Talesh N, Horio T, Araujo-Bazán L, Dou X, Espeso EA, Peñalva MA, Osmani SA, Oakley BR (2008) The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19:1439–1449

    Article  PubMed  CAS  Google Scholar 

  • Takeshita N, Higashitsuji Y, Konzack S, Fisher R (2008) Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionally in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 19:339–351

    Article  PubMed  CAS  Google Scholar 

  • Torralba S, Heath IB (2002) Analysis of three separate probes suggests the absence of endocytosis in Neurospora crassa hyphae. Fungal Genet Biol 37:221–232

    Article  PubMed  Google Scholar 

  • Upadhyah S, Shaw BD (2008) The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans. Mol Microbiol 68:690–705

    Article  Google Scholar 

  • van Leeuwen MR, Smant W, de Boer W, Dijksterhuis J (2008) Filipin is a reliable in situ marker of ergosterol in the plasma membrane of germinating conidia (spores) of Penicillium discolor and stains intensively at the site of germ tube formation. J Microbiol Methods 74:64–73

    Article  PubMed  Google Scholar 

  • Virag A, Harris SD (2006) The Spitzenkörper: a molecular perspective. Mycol Res 110:4–13

    Article  PubMed  CAS  Google Scholar 

  • Wessels JGH (1990) Role of cell wall architecture in fungal tip growth generation. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, San Diego, pp 1–29

    Google Scholar 

  • Wösten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137:2017–2023

    PubMed  Google Scholar 

Download references

Acknowledgments

JD was funded by a Leverhulme Grant. The authors are very much indebted to Nick Read, University of Edinburgh, for in depth discussions and suggestions during writing of the manuscript. The authors thank N. Christine Øien for assistance with some of the experiments. The authors are also indebted to Patrick Hickey and Sabine Fisher-Parton for helpful suggestions and technical advice and Rosamaria López-Franco and Charles Bracker for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Dijksterhuis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dijksterhuis, J., Molenaar, D. Vesicle trafficking via the Spitzenkörper during hyphal tip growth in Rhizoctonia solani . Antonie van Leeuwenhoek 103, 921–931 (2013). https://doi.org/10.1007/s10482-012-9873-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9873-1

Keywords

Navigation