Skip to main content
Log in

An in vitro study of Lactobacillus plantarum strains for the presence of plantaricin genes and their potential control of the table olive microbiota

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Sixteen Lactobacillus plantarum strains, isolated from fermented table olives, were studied for the presence and expression of genes involved in the production of bacteriocins, pheromones and other peptides. The presence of 13 genes that belong to pln locus was monitored, while for the study of gene expression, producer strains were cultured in growth medium with variant salinity (0, 4, 6, and 8 % NaCl) and pH (3.5, 4.0, 4.5, and 6.4). The effect of producer strain on the growth of indicator microorganisms was evaluated using a well diffusion assay. In parallel, Real-Time PCR was employed to monitor the genetic expression of plnE/F and plnJ/K genes for strains that revealed the highest antimicrobial activity. The well diffusion assay showed that the growth of Lactobacillus pentosus was inhibited by six L. plantarum strains when cultured on control medium (0 % NaCl, pH 6.4). Moreover, when the same growth medium was supplemented with 4 and 6 % NaCl, the growth of L. pentosus was inhibited by three and two L. plantarum strains, respectively. Growth of L. pentosus was favoured when L. plantarum strains were cultured on a growth medium with lowered pH (3.5, 4.0, and 4.5). No inhibition of pathogens was observed, but in a few cases, inhibition of Aureobasidium pullulans was detected. The Real-Time PCR assay revealed that the expression of genes was dependent on producer strains and growth phase, whereas inhibition of indicator strains was enhanced in earlier stages of the growth curve in the presence of NaCl, although similar counts were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abriouel H, Ben Omar N, Pulido RP, López RL, Ortega E, Cañamero MM, Gálvez A (2008) Vegetable Fermentations. In: Cocolin L, Ercolini D (eds) Molecular techniques in the microbial ecology of fermented foods. Springer Science Business Media, LLC., New York, pp 145–161

    Chapter  Google Scholar 

  • Anderssen EL, Diep BD, Nes IF, Eijsink VG, Nissen-Meyer J (1998) Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol 64:2269–2272

    Google Scholar 

  • Arroyo López FN, Romero-Gil V, Bautista Gallego J, Rodríguez Gómez F, García García P, Querol A, Garrido-Fernández A (2012) Yeasts in table olive processing: desirable or spoilage microorganisms? Int J Food Microbiol 160:42–49

    Article  PubMed  Google Scholar 

  • Ben Omar N, Abriouel H, Keleke S, Sanchez Valenzuela A, Martinez-Canamero M, Lucas Lopez R, Ortega E, Galvez A (2008) Bacteriocin-producing Lactobacillus strains isolated from poto poto, a congolese fermented maize product, and genetic fingerprinting of their plantaricin operons. Int J Food Microbiol 127:18–19

    Article  PubMed  CAS  Google Scholar 

  • Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP et al (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154:87–97

    Article  PubMed  CAS  Google Scholar 

  • Bron PA, Marco M, Hoffer SM, Van Mullekom E, de Vos WM, Kleerebezem M (2004) Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract. J Bacteriol 186:7829–7835

    Article  PubMed  CAS  Google Scholar 

  • Budde BΒ, Hornbæk T, Jacobsen T, Barkholt V, Koch AG (2002) Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: culture isolation, bacteriocin identification, and meat application experiments. Int J Food Microbiol 83:171–172

    Article  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    Article  PubMed  CAS  Google Scholar 

  • Cho GS, Huch M, Hanak A, Holzapfel WH, Franz CMAP (2010) Genetic analysis of the plantaricin EFI locus of Lactobacillus plantarum PCS20 reveals an unusual plantaricin E gene sequence as a result of mutation. Int J Food Microbiol 141:117–124

    Article  Google Scholar 

  • De Vuyst L, Vandamme EJ (1994) Antimicrobial potential of lactic acid bacteria. In: De Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria: microbiology. Genetics and applications. Blackie academic and professional, London, pp 91–142

    Chapter  Google Scholar 

  • Delgado A, Brito D, Peres C, Noé-Arroyo F, Garrido-Fernández A (2005) Bacteriocin production by Lactobacillus pentosus B96 can be expressed as a function of temperature and NaCl concentration. Food Microbiol 22:521–528

    Article  CAS  Google Scholar 

  • Desroche N, Beltramo C, Guzzo J (2005) Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acid bacterium Oenococcus oeni. J Microbiol Methods 60:325–333

    Article  PubMed  CAS  Google Scholar 

  • Di Cagno R, Coda R, De Angelis M, Gobbetti M (2012) Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol 33:1–10

    Article  PubMed  Google Scholar 

  • Diep DB, Håvarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178:4472–4483

    Google Scholar 

  • Diep DB, Straume D, Kjos M, Torres C, Nes IF (2009) An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 30:1562–1653

    Article  PubMed  CAS  Google Scholar 

  • Doulgeraki AI, Paramithiotis S, Nychas GJE (2011) Characterization of the Enterobacteriaceae community that developed during storage of minced beef under aerobic or modified atmosphere packaging conditions. Int J Food Microbiol 145:77–83

    Article  PubMed  Google Scholar 

  • Doulgeraki AI, Hondrodimou O, Iliopoulos V, Panagou EZ (2012) Lactic acid bacteria and yeast heterogeneity during aerobic and modified atmosphere packaging storage of natural black conservolea olives in polyethylene pouches. Food Control 26:49–57

    Article  CAS  Google Scholar 

  • Doulgeraki AI, Pramateftaki P, Argyri AA, Nychas GJE, Tassou CC, Panagou EZ (2013) Molecular characterization of lactic acid bacteria isolated from industrially fermented Greek table olives. LWT Food Sci Technol 50:353–356

    Article  CAS  Google Scholar 

  • Ercolini D, Villani F, Aponte M, Mauriello G (2006) Fluorescence in situ hybridization detection of Lactobacillus plantarum group on olives to be used in natural fermentations. Int J Food Microbiol 112:291–296

    Article  PubMed  CAS  Google Scholar 

  • Garrido Fernández A, Fernández Díaz MJ, Adams MR (1997) Table olives: production and processing. Chapman and Hall, London

    Google Scholar 

  • Hansen EB (2002) Commercial bacterial starter cultures for fermented foods of the future. Int J Food Microbiol 78:119–131

    Article  PubMed  Google Scholar 

  • Holzapfel WH, Giesen R, Schillinger U (1995) Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int J Food Microbiol 24:343–362

    Article  PubMed  CAS  Google Scholar 

  • Hurtado A, Othman NB, Hamdi M, Ferrer S, Reguant C, Bordons A, Rozès N (2011a) Characterization of Lactobacillus isolates from fermented olives and their bacteriocin gene profiles. Food Microbiol 28:1514–1518

    Article  PubMed  CAS  Google Scholar 

  • Hurtado A, Reguant C, Bordons A, Rozès N (2011b) Expression of Lactobacillus pentosus B96 bacteriocin genes under saline stress. Food Microbiol 28:1339–1344

    Article  PubMed  CAS  Google Scholar 

  • Hurtado A, Reguant C, Bordous A, Rozès N (2012) Lactic acid bacteria from fermented table olives. Food Microbiol 31:1–8

    Article  PubMed  CAS  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Maldonado A, Ruiz-Barba JL, Floriano B, Jiménez-Díaz R (2002) The locus responsible for production of plantaricin S, a class II-b bacteriocin produced by L. plantarum LPCO10, is widely distributed among wild-type L. plantarum strains isolated from olive fermentations. Int J Food Microbiol 77:117–124

    Article  PubMed  CAS  Google Scholar 

  • Maldonado A, Jimenez-Diaz R, Ruiz-Barba JL (2004) Induction of plantaricin production in Lactobacillus plantarum NC8 after coculture with specific gram-positive bacteria is mediated by an autoinduction mechanism. J Bacteriol 186:1556–1564

    Google Scholar 

  • Marco ML, Bongers RS, de Vos WM, Kleerebezem M (2007) Spatial and temporal expression of L. plantarum genes in the gastrointestinal tracts of mice. Appl Environ Microbiol 73:124–132

    Article  PubMed  CAS  Google Scholar 

  • Molin G (2008) Lactobacillus plantarum: The role in foods and in human health. In: Farnworth ER (ed) Fermented functional foods CRC press. Boca Raton, London, pp 1–25

    Google Scholar 

  • Nisiotou AA, Chorianopoulos N, Nychas GJE, Panagou EZ (2010) Yeast heterogeneity during spontaneous fermentation of black conservolea olives in different brine solutions. J Appl Microbiol 108:396–405

    Article  PubMed  CAS  Google Scholar 

  • Prajapati JB, Nair MB (2003) The history of fermented foods. In: Farnworth ER (ed) Fermented functional foods CRC press. Boca Raton, London, pp 1–25

    Google Scholar 

  • Randazzo CL, Restuccia CA, Romano D, Caggia C (2004) Lactobacillus casei, dominant species in naturally fermented Sicilian green olives. Int J Food Microbiol 90:9–14

    Article  PubMed  Google Scholar 

  • Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16

    Article  PubMed  CAS  Google Scholar 

  • Rubia-Soria A, Abriouel H, Lucas R, Ben Omar N, Martínez-Cañamero M, Gálvez A (2006) Production of antimicrobial substances by bacteria isolated from fermented table olives. World J Microbiol Biotechnol 22:765–768

    Article  CAS  Google Scholar 

  • Sánchez Gómez AH, García García P, Rejano Navarro L (2006) Elaboration of table olives. Grasas y Aceites 57:86–94

    Article  Google Scholar 

  • Stephens S, Floriano B, Cathcart DP, Bayley SA, Witt VF, Jiménez-Díaz R, Warner PJ, Ruiz-Barba JL (1998) Molecular analysis of the locus responsible for production of plantaricin S, a two-peptide bacteriocin produced by L. plantarum LPCO10. Appl Environ Microbiol 64:1871–1877

    PubMed  CAS  Google Scholar 

  • Todorov SD, Dicks LMT (2006) Effect of medium components on bacteriocin production by L. plantarum strains ST23LD and ST341LD, isolated from spoiled olive brine. Microbiol Res 161:102–108

    Article  PubMed  CAS  Google Scholar 

  • Yuste L, Hervás AB, Canosa I, Tobes R, Jiménez JI, Nogales J, Pérez-Pérez MM, Santero E, Díaz E, Ramos JL, De Lorenzo V, Rojo F (2006) Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environ Microbiol 8:165–177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was funded by the European Commission under the 7th Framework Programme PROBIOLIVES (http://www.probiolives.eu). The information in this document reflects only the author’s views and the Community is not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agapi I. Doulgeraki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doulgeraki, A.I., Paraskevopoulos, N., Nychas, G.J.E. et al. An in vitro study of Lactobacillus plantarum strains for the presence of plantaricin genes and their potential control of the table olive microbiota. Antonie van Leeuwenhoek 103, 821–832 (2013). https://doi.org/10.1007/s10482-012-9864-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9864-2

Keywords

Navigation