Skip to main content
Log in

Determining the influence of environmental and patient specific factors on the polymicrobial communities of the cystic fibrosis airway

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the polymicrobial communities in an adult Cystic Fibrosis population stratified by gender and the most common CFTR mutation, F508del. In this pilot study, DNA was extracted from sputum samples of 29 adult patients (16 male: 13 female) with an F508del mutation in a stable clinical state. Universal primers were used to amplify DNA from bacterial and fungal communities and the resulting fragments were analysed by denaturing gradient gel electrophoresis. Bacterial profiles showed a significant effect of gender (P = 0.046) and P. aeruginosa carriage (P = 0.034) on community structure. Bacterial communities were found to be randomly assembled. Fungal community analysis found that F508del homozygous patients had a greater diversity than heterozygous patients (P = 0.007). This study indicates that the bacterial lung communities of adult CF patients are randomly assembled but have distinct gender based differences. Furthermore, the fungal communities colonising the CF lung are more diverse in F508 homozygotes. This is the first paper to identify a reduced bacterial diversity in female patients with CF and to implicate more severe CFTR genotypes with increased risk of infection with multiple fungal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amin R, Dupuis A, Aaron SD, Ratjen F (2010) The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 137:171–176. doi:10.1378/chest.09-1103

    Article  PubMed  Google Scholar 

  • Bittar F, Richet H, Dubus JC, Reynaud-Gaubert M, Stremler N, Sarles J, Raoult D, Rolain JM (2008) Molecular detection of multiple emerging pathogens in sputa from cystic fibrosis patients. PLoS ONE 3:e2908. doi:10.1371/journal.pone.0002908

    Article  PubMed  Google Scholar 

  • Block JK, Vandemheen KL, Tullis E et al (2006) Predictors of pulmonary exacerbations in patients with cystic fibrosis infected with multi-resistant bacteria. Thorax 61:969–974. doi:10.1136/thx.2006.061366

    Article  PubMed  CAS  Google Scholar 

  • Bouchara JP, Hsieh HY, Croquefer S, Barton R, Marchais V, Pihet M, Chang TC (2009) Development of an oligonucleotide array for direct detection of fungi in sputum samples from patients with cystic fibrosis. J Clin Microbiol 47:142–152. doi:10.1128/JCM.01668-08

    Article  PubMed  CAS  Google Scholar 

  • Burns JL, Emerson J, Stapp JR, Yim DL, Krzewinski J, Louden L, Ramsey BW, Clausen CR (1998) Microbiology of sputum from patients at cystic fibrosis centres in the United States. Clin Infect Dis 27:158–163

    Article  PubMed  CAS  Google Scholar 

  • Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am Respir Crit Care Med 184:957–963. doi:10.1164/rccm.201104-0655OC

    Article  Google Scholar 

  • Chotirmall SH, Greene CM, Oglesby IK, Thomas W, O’Neill SJ, Harvey BJ, McElvaney NG (2010a) Beta-estradiol inhibits IL-8 in cystic fibrosis by up-regulating secretory leucoprotease inhibitor. Am Respir Crit Care Med 182:62–72. doi:10.1164/rccm.201001-0053OC

    Article  CAS  Google Scholar 

  • Chotirmall SH, O’Donoghue E, Bennett K, Gunaratnam C, O’Neill SJ, McElvaney NG (2010b) Sputum Candida albicans presages FEV1 decline and hospital-treated exacerbations in cystic fibrosis. Chest 138:1186–1195. doi:10.1378/chest.09-2996

    Article  PubMed  Google Scholar 

  • Cox MJ, Allgaier M, Taylor B et al (2010) Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS ONE 5:e11044. doi:10.1371/journal.pone.0011044

    Article  PubMed  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345. doi:10.1038/ismej.2009.122

    Article  PubMed  Google Scholar 

  • Emerson J, McNamara S, Buccat AM, Worrell K, Burns JL (2010) Changes in cystic fibrosis sputum microbiology in the United States between 1995 and 2008. Pediatr Pulmonol 45:363–370. doi:10.1002/ppul.21198

    PubMed  Google Scholar 

  • Erb-Downward JR, Thompson DL, Han MK et al (2011) Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE 6:e16384. doi:10.1371/journal.pone.0016384

    Article  PubMed  CAS  Google Scholar 

  • Giraud S, Pihet M, Razafimandimby B, Carrère J, Degand N, Mely L, Favennec L, Dannaoui E, Bouchara JP, Calenda A (2010) Geosmithia argillacea: an emerging pathogen in patients with cystic fibrosis. J Clin Microbiol 48:2381–2386. doi:10.1128/JCM.00047-10

    Article  PubMed  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9

    Google Scholar 

  • Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Google Scholar 

  • Kerem E, Reisman J, Corey M, Canny GJ, Levison H (1992) Prediction of mortality in patients with cystic fibrosis. N Engl J Med 326:1187–1191. doi:10.1056/NEJM199204303261804

    Article  PubMed  CAS  Google Scholar 

  • Klepac-Ceraj V, Lemon KP, Martin TR et al (2010) Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ Microbiol 12:1293–1303. doi:10.1111/j.1462-2920.2010.02173.x

    Article  PubMed  CAS  Google Scholar 

  • Lane D (1991) Nucleic acid techniques in bacterial systematics, 1st edn. Wiley, New York

    Google Scholar 

  • Levy H, Kalish LA, Cannon CL, García KC, Gerard C, Goldmann D, Pier GB, Weiss ST, Colin AA (2008) Predictors of mucoid Pseudomonas colonization in cystic fibrosis patients. Pediatr Pulmonol 43:463–471. doi:10.1002/ppul.20794

    Article  PubMed  Google Scholar 

  • McKone EF, Goss CH, Aitken ML (2006) CFTR genotype as a predictor of prognosis in cystic fibrosis. Chest 130:1441–1447. doi:10.1378/chest.130.5.1441

    Article  PubMed  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nelson A, De Soyza A, Bourke SJ, Perry JD, Cummings SP (2010) Assessment of sample handling practices on microbial activity in sputum samples from patients with cystic fibrosis. Lett Appl Microbiol 51:272–277. doi:10.1111/j.1472-765X.2010.02891.x

    Article  PubMed  CAS  Google Scholar 

  • Nelson A, De Soyza A, Perry JD, Sutcliffe IC, Cummings SP (2012) Polymicrobial challenges to Koch’s postulates: ecological lessons from the bacterial vaginosis and cystic fibrosis microbiomes. Innate Immun 18:774–783. doi:10.1177/1753425912439910

    Article  PubMed  Google Scholar 

  • Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD (2004) Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 42:5176–5183. doi:10.1128/JCM.42.11.5176-5183.2004

    Article  PubMed  CAS  Google Scholar 

  • Sandhu GS, Kline BC, Stockman L, Roberts GD (1995) Molecular probes for diagnosis of fungal infections. J Clin Microbiol 33:2913–2919

    PubMed  CAS  Google Scholar 

  • Stressmann FA, Rogers GB, Klem ER et al (2011) Analysis of the bacterial communities present in lungs of patients with cystic fibrosis from American and British centers. J Clin Microbiol 49:281–291. doi:10.1128/JCM.01650-10

    Article  PubMed  Google Scholar 

  • Tourlomousis P, Kemsley EK, Ridgway KP, Toscano MJ, Humphrey TJ, Narbad A (2010) PCR-denaturing gradient gel electrophoresis of complex microbial communities: a two-step approach to address the effect of gel-to-gel variation and allow valid comparisons across a large dataset. Microb Ecol 59:776–786. doi:10.1007/s00248-009-9613-x

    Article  PubMed  CAS  Google Scholar 

  • Tunney MM, Field TR, Moriarty TF et al (2008) Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med 177:995–1001. doi:10.1164/rccm.200708-1151OC

    Article  PubMed  Google Scholar 

  • Van Der Gast CJ, Walker AW, Stressmann FA, Rogers GB, Scott P, Daniels TW, Carroll MP, Parkhill J, Bruce KD (2010) Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J. doi:10.1038/ismej.2010.175

    Google Scholar 

  • Yoon SS, Hennigan RF, Hilliard GM et al (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593–603

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Cummings.

Additional information

Stephen P. Cummings and Anthony De Soyza: Joint senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, A., Perry, A., Perry, J.D. et al. Determining the influence of environmental and patient specific factors on the polymicrobial communities of the cystic fibrosis airway. Antonie van Leeuwenhoek 103, 755–762 (2013). https://doi.org/10.1007/s10482-012-9857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9857-1

Keywords

Navigation