Skip to main content
Log in

Activation of Bacillus spores at moderately elevated temperatures (30–33 °C)

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The time/temperature profiles experienced by spores on the track from their natural sporulation environment to consumable food products may be highly diverse. Temperature has been documented as an important factor that may activate spores, i.e. potentiates spores to germinate. There is, however, limited knowledge about the relationship between the expected temperature history and the subsequent germination characteristics of bacterial spores. We show here that the germination rate of five different Bacillus spore populations, represented by strains of Bacillus cereus, Bacillus weihenstephanensis, Bacillus pumilus, Bacillus licheniformis and Bacillus subtilis could be increased following 1 week storage at moderately elevated temperatures, 30–33 °C, compared to spores stored at 3–8 °C. The results imply that spores contamination routes to foods, specifically the temperature history, could be highly relevant data in predictive modeling of food spoilage and safety. Activation at these moderately elevated temperatures may be a native form of spore activation in their natural habitats, knowledge that also could be useful in development of decontamination strategies for mildly heated foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Abee T, Groot MN, Tempelaars M, Zwietering M, Moezelaar R, van der Voort M (2011) Germination and outgrowth of spores of Bacillus cereus group members: diversity and role of germinant receptors. Food Microbiol 28:199–208

    Article  PubMed  Google Scholar 

  • Arnesen LPS, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606

    Article  Google Scholar 

  • Berg RW, Sandine WE (1970) Activation of bacterial spores––a review. J Milk Food Technol 33:435–441

    Google Scholar 

  • Busta FF, Ordal ZJ (1964) Heat-activation kinetics of endospores of Bacillus subtilis. J Food Sci 29:345–353

    Article  CAS  Google Scholar 

  • Cabrera-Martinez RM, Tovar-Rojo F, Vepachedu VR, Setlow P (2003) Effects of overexpression of nutrient receptors on germination of spores of Bacillus subtilis. J Bacteriol 185:2457–2464

    Article  PubMed  CAS  Google Scholar 

  • Carlin F (2011) Origin of bacterial spores contaminating foods. Food Microbiol 28:177–182

    Article  PubMed  Google Scholar 

  • Collado J, Fernandez A, Rodrigo M, Martinez A (2004) Variation of the spore population of a natural source strain of Bacillus cereus in the presence of inosine. J Food Prot 67:934–938

    PubMed  CAS  Google Scholar 

  • De Jonghe V, Coorevits A, De Block J, van Coillie E, Grijspeerdt K, Herman L, De Vos P, Heyndrickx M (2010) Toxinogenic and spoilage potential of aerobic spore-formers isolated from raw milk. Int J Food Microbiol 136:318–325

    Article  PubMed  Google Scholar 

  • Dworkin J, Shah IM (2010) Exit from dormancy in microbial organisms. Nat Rev Microbiol 8:890–896

    Article  PubMed  CAS  Google Scholar 

  • Ehling-Schulz M, Svensson B, Guinebretiere MH, Lindback T, Andersson M, Schulz A, Fricker M, Christiansson A, Granum PE, Martlbauer E, Nguyen-The C, Salkinoja-Salonen M, Scherer S (2005) Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151:183–197

    Article  PubMed  CAS  Google Scholar 

  • Eijlander RT, Abee T, Kuipers OP (2011) Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Curr Opin Biotechnol 22:180–186

    Article  PubMed  CAS  Google Scholar 

  • Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126

    Article  PubMed  CAS  Google Scholar 

  • From C, Hormazabal V, Granum PE (2007) Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice. Int J Food Microbiol 115:319–324

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Setlow P (2009) Isolation and characterization of superdormant spores of Bacillus species. J Bacteriol 191:1787–1797

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Setlow P (2010) The preparation, germination properties and stability of superdormant spores of Bacillus cereus. J Appl Microbiol 108:582–590

    Article  PubMed  CAS  Google Scholar 

  • Gould GW (1969) Germination. In: Gould GW, Hurst A (eds) The bacterial spore. Academic, London, pp 397–444

    Google Scholar 

  • Gould GW (2001) New processing technologies: an overview. Proc Nutr Soc 60:463–474

    Article  PubMed  CAS  Google Scholar 

  • Granum PE, Braid-Parker TC (2000) Bacillus species. In: Lund BM, Braid-Parker TC, Gould GW (eds) The microbiological safety and quality of food, vol II. Aspen, Gaithersburg, pp 1029–1039

    Google Scholar 

  • Guinebretiere MH, Nguyen-The C (2003) Sources of Bacillus cereus contamination in a pasteurized zucchini puree processing line, differentiated by two PCR-based methods. FEMS Microbiol Ecol 43:207–215

    PubMed  CAS  Google Scholar 

  • Hornstra LM, de Vries YP, de Vos WM, Abee T, Wells-Bennik MHJ (2005) gerR, a novel ger operon involved in l-alanine- and inosine-initiated germination of Bacillus cereus ATCC 14579. Appl Environ Microbiol 71:774–781

    Article  PubMed  CAS  Google Scholar 

  • Hornstra LM, Ter Beek A, Smelt JP, Kallemeijn WW, Brul S (2009) On the origin of heterogeneity in (preservation) resistance of Bacillus spores: input for a ‘systems’ analysis approach of bacterial spore outgrowth. Int J Food Microbiol 134:9–15

    Article  PubMed  Google Scholar 

  • Indest KJ, Buchholz WG, Faeder JR, Setlow P (2009) Workshop report: modeling the molecular mechanism of bacterial spore germination and elucidating reasons for germination heterogeneity. J Food Sci 74:R73–R78

    Article  PubMed  CAS  Google Scholar 

  • Keynan A, Evenchik Z (1969) Activation. In: Gould GW, Hurst A (eds) The bacterial spore. Academic, New York, pp 359–396

    Google Scholar 

  • Keynan A, Halvorson HO, Evenchik Z, Hastings JW (1964) Activation of bacterial endospores. J Bacteriol 88:313–318

    PubMed  CAS  Google Scholar 

  • Knaysi G (1964) Effect of temperature on rate of germination in Bacillus cereus. J Bacteriol 87:619–622

    PubMed  CAS  Google Scholar 

  • Kong LB, Zhang PF, Setlow P, Li YQ (2010) Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers. Anal Chem 82:3840–3847

    Article  PubMed  CAS  Google Scholar 

  • Kramer JM, Gilbert RJ (1989) Bacillus cereus and other Bacillus species. In: Doyle MP (ed) Foodborne bacterial pathogens. Marcel Dekker Inc, New York, pp 21–70

    Google Scholar 

  • Leguerinel I, Mafart P (2001) Modelling the influence of pH and organic acid types on thermal inactivation of Bacillus cereus spores. Int J Food Microbiol 63:29–34

    Article  PubMed  CAS  Google Scholar 

  • Logan NA, De Vos P (2009) Genus I. Bacillus. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3. Springer, New York, pp 21–128

    Google Scholar 

  • Løvdal IS, Hovda MB, Granum PE, Rosnes JT (2011) Promoting Bacillus cereus spore germination for subsequent inactivation by mild heat treatment. J Food Prot 74:2079–2089

    Article  PubMed  Google Scholar 

  • Moir A (2006) How do spores germinate? J Appl Microbiol 101:526–530

    Article  PubMed  CAS  Google Scholar 

  • Moir A, Smith DA (1990) The genetics of bacterial spore germination. Annu Rev Microbiol 44:531–553

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Setlow P (1990) Sporulation, germination and outgrowth. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp 391–450

    Google Scholar 

  • Paidhungat M, Setlow P (2002) Spore germination and outgrowth. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. Amercian Society for Microbiology, Washington, pp 537–548

    Google Scholar 

  • Powell JF (1950) Factors affecting the germination of thick suspensions of Bacillus subtilis spores in l-alanine solution. J Gen Microbiol 4:330–339

    PubMed  CAS  Google Scholar 

  • Priest FG, Goodfellow M, Todd C (1988) A numerical classification of the genus Bacillus. J Gen Microbiol 134:1847–1882

    PubMed  CAS  Google Scholar 

  • Setlow P (2003) Spore germination. Curr Opin Microbiol 6:550–556

    Article  PubMed  CAS  Google Scholar 

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514–525

    Article  PubMed  CAS  Google Scholar 

  • Setlow P, Johnson EA (2007) Spores and their significance. In: Doyle MP, Beuchat LR (eds) Food Microbiology: fundamentals and frontiers. ASM, Washington, pp 35–67

    Google Scholar 

  • Shah IM, Laaberki MH, Popham DL, Dworkin J (2008) A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135:486–496

    Article  PubMed  CAS  Google Scholar 

  • Stenfors LP, Mayr R, Scherer S, Granum PE (2002) Pathogenic potential of fifty Bacillus weihenstephanensis strains. FEMS Microbiol Lett 215:47–51

    Article  PubMed  CAS  Google Scholar 

  • van der Voort M, Garcia D, Moezelaar R, Abee T (2010) Germinant receptor diversity and germination responses of four strains of the Bacillus cereus group. Int J Food Microbiol 139:108–115

    Article  PubMed  Google Scholar 

  • Vary JC, Halvorson HO (1965) Kinetics of germination of Bacillus spores. J Bacteriol 89:1340–1347

    PubMed  CAS  Google Scholar 

  • Wolf J, Mahmoud SAZ (1957) The germination and enzymic activities of Bacillus spores at low temperatures. J Appl Bacteriol 20:124–136

    Article  CAS  Google Scholar 

  • Zhang PF, Setlow P, Li YQ (2009) Characterization of single heat-activated Bacillus spores using laser tweezers Raman spectroscopy. Opt Express 17:16480–16491

    Article  PubMed  CAS  Google Scholar 

  • Zhang PF, Garner W, Yi XA, Yu J, Li YQ, Setlow P (2010) Factors affecting variability in time between addition of nutrient germinants and rapid dipicolinic acid release during germination of spores of Bacillus species. J Bacteriol 192:3608–3619

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Drs. Barbara and Peter Setlow for donating B. subtilis PS533 and for helpful technical advice. The authors thank the Research Council of Norway for financial support through grant 178299/I10, and the foundation NORCONSERV through project BacISS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trond Løvdal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Løvdal, I.S., Granum, P.E., Rosnes, J.T. et al. Activation of Bacillus spores at moderately elevated temperatures (30–33 °C). Antonie van Leeuwenhoek 103, 693–700 (2013). https://doi.org/10.1007/s10482-012-9839-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9839-3

Keywords

Navigation