Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea

Abstract

A Gram-negative, rod-shaped, slightly halophilic and facultatively anaerobic bacterium, designated strain D15-8WT, was isolated from the sediment of the South China Sea. Growth was found to occur optimally at 25 °C, between pH 7.0 and 8.0 and with 1–5 % (w/v) NaCl. The strain was observed to utilize a variety of organic substrates and polycyclic aromatic hydrocarbons as sole carbon sources. The G+C content of the genomic DNA was determined to be 58.7 %. The predominant respiratory quinone was found to be Q-9. The significant fatty acids were determined to be C16:0, C16:1 ω9c, C18:1 ω9c, C12:0 and C14:0 3OH. Analysis of 16S rRNA gene sequences showed that strain D15-8WT fits within the phylogenetic cluster of the genus Marinobacter and is most closely related to Marinobacter segnicrescens CGMCC 1.6489T, Marinobacter bryozoorum DSM 15401T, Marinobacter lacisalsi CECT 7297T and Marinobacter daqiaonensis CGMCC1.9167T. The DNA–DNA hybridization values between strain D15-8WT and the type strains of the most closely related species were 42.3 % (CGMCC 1.6489T), 39.8 % (DSM 15401T), 37.3 % (CECT 7297T) and 35.2 % (CGMCC1.9167T). The results of this polyphasic study indicate that strain D15-8WT represents a novel species of the genus Marinobacter, for which the name Marinobacter nanhaiticus sp. nov. is proposed. The type strain is D15-8WT (=CGMCC 1.11019T=KCTC 23749T).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aguilera M, Jiménez-Pranteda ML, Kharroub K, González-Paredes A, Durban JJ, Russell NJ, Ramos-Cormenzana A, Monteoliva-Sánchez M (2009) Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain. Int J Syst Evol Microbiol 59:1691–1695

    PubMed  Article  CAS  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  3. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology, 3rd edn. Wiley, New York

    Google Scholar 

  4. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    PubMed  Article  CAS  Google Scholar 

  5. Collins MD (1985) Isoprenoid quinone analysis in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287

    Google Scholar 

  6. Cui ZS, Shao ZZ (2009) Predominant strains of polycyclic aromatic hydrocarbon-degrading consortia from deep sea of the Middle Atlantic Ridge. Acta Microbiol Sin 49:902–909

    CAS  Google Scholar 

  7. Cui ZS, Lai QL, Dong CM, Shao ZZ (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 10:2138–2149

    PubMed  Article  CAS  Google Scholar 

  8. Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Scientific, Beijing

    Google Scholar 

  9. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123

    PubMed  Article  CAS  Google Scholar 

  10. Euzéby, J. P. (2012). List of bacterial names with standing in nomenclature. http://www.bacterio.cict.fr/. Accessed 20 June 2012

  11. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    PubMed  Article  CAS  Google Scholar 

  12. Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS (2006) Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 56:523–527

    PubMed  Article  CAS  Google Scholar 

  13. Guo B, Gu J, Ye YG, Tang YQ, Kida K, Wu XL (2007) Marinobacter segnicrescens sp. nov., a moderate halophile isolated from benthic sediment of the South China Sea. Int J Syst Evol Microbiol 57:1970–1974

    PubMed  Article  CAS  Google Scholar 

  14. Hedlund BP, Geiselbrecht AD, Staley JT (2001) Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Int J Syst Evol Microbiol 59:886–892

    Google Scholar 

  15. Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375

    PubMed  Article  CAS  Google Scholar 

  16. Kim BY, Weon HY, Yoo SH, Kim JS, Kwon SW, Stackebrandt E, Go SJ (2006) Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 56:2653–2656

    PubMed  Article  CAS  Google Scholar 

  17. Kiyohara H, Nagao K, Yana K (1982) Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl Environ Microbiol 43:454–457

    PubMed  CAS  Google Scholar 

  18. Márquez MC, Ventosa A (2005) Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms. Int J Syst Evol Microbiol 55:1349–1351

  19. Melcher RJ, Apitz SE, Hemmingsen BB (2002) Impact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies. Appl Environ Microbiol 68:2858–2868

    PubMed  Article  CAS  Google Scholar 

  20. Mesbah M, Whitman WB (1989) Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr 479:297–306

    PubMed  Article  CAS  Google Scholar 

  21. Prakash O, Kumari K, Lal R (2007) Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int J Syst Evol Microbiol 57:527–531

    PubMed  Article  CAS  Google Scholar 

  22. Qu LY, Zhu FL, Zhang JX, Gao CL, Sun XQ (2011) Marinobacter daqiaonensis sp. nov., a moderate halophile isolated from a Yellow Sea salt pond. Int J Syst Evol Microbiol 61:3003–3008

    PubMed  Article  CAS  Google Scholar 

  23. Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV, Stackebrandt E (2005) Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55:143–148

    PubMed  Article  CAS  Google Scholar 

  24. Rontani JF, Gilewicz MJ, Michotey VD, Zheng TL, Bonin PC, Bertrand JC (1997) Aerobic and anaerobic metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments. Appl Environ Microbiol 63:636–643

    PubMed  CAS  Google Scholar 

  25. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  26. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  27. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI Inc, Newark

    Google Scholar 

  28. Shieh WY, Jean WD, Lin YT, Tseng M (2003) Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49:244–252

    PubMed  Article  CAS  Google Scholar 

  29. Shivaji S, Gupta P, Chaturvedi P, Suresh K, Delille D (2005) Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55:1453–1456

    PubMed  Article  CAS  Google Scholar 

  30. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  31. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  Article  CAS  Google Scholar 

  32. Tourova TP, Antonov AS (1987) Identification of microorganisms by rapid DNA–DNA hybridization. Methods Microbiol 19:333–355

    Article  Google Scholar 

  33. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (40906062, 41076108), the Project of Fundamental Science Research, First Institute of Oceanography (2012T07, 2010G23), and Open Fund of Key Lab of Coastal Ecosystem and Environment Research of State Oceanic Administration (201008).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 406 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gao, W., Cui, Z., Li, Q. et al. Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea. Antonie van Leeuwenhoek 103, 485–491 (2013). https://doi.org/10.1007/s10482-012-9830-z

Download citation

Keywords

  • Marinobacter
  • Polycyclic aromatic hydrocarbon
  • Biodegradation
  • South China Sea