Antonie van Leeuwenhoek

, Volume 103, Issue 2, pp 331–346 | Cite as

A global analysis of adaptive evolution of operons in cyanobacteria

  • Danish Memon
  • Abhay K. Singh
  • Himadri B. Pakrasi
  • Pramod P. Wangikar
Original Paper

Abstract

Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.

Keywords

Comparative genomics Genome context Gene packing Phylogenetic distance Blue-green algae 

Supplementary material

10482_2012_9813_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1124 kb)
10482_2012_9813_MOESM2_ESM.xls (46 kb)
Supplementary material 2 (XLS 47 kb)
10482_2012_9813_MOESM3_ESM.xls (2.5 mb)
Supplementary material 3 (XLS 2552 kb)
10482_2012_9813_MOESM4_ESM.zip (1.8 mb)
Supplementary material 4 (ZIP 1889 kb)
10482_2012_9813_MOESM5_ESM.xls (27 kb)
Supplementary material 5 (XLS 247 kb)
10482_2012_9813_MOESM6_ESM.xls (23 kb)
Supplementary material 6 (XLS 23 kb)
10482_2012_9813_MOESM7_ESM.xls (24 kb)
Supplementary material 7 (XLS 24 kb)

References

  1. Agervald A, Stensjo K, Holmqvist M, Lindblad P (2008) Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120. BMC Microbiol 8:69PubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Bergman NH, Passalacqua KD, Hanna PC, Qin ZS (2007) Operon prediction for sequenced bacterial genomes without experimental information. Appl Environ Microbiol 73(3):846–854PubMedCrossRefGoogle Scholar
  4. Bockhorst J, Craven M, Page D, Shavlik J, Glasner J (2003a) A Bayesian network approach to operon prediction. Bioinformatics 19(10):1227–1235PubMedCrossRefGoogle Scholar
  5. Bockhorst J, Qiu Y, Glasner J, Liu M, Blattner F, Craven M (2003b) Predicting bacterial transcription units using sequence and expression data. Bioinformatics 19(Suppl 1):i34–i43PubMedCrossRefGoogle Scholar
  6. Brouwer RW, Kuipers OP, van Hijum SA (2008) The relative value of operon predictions. Brief Bioinform 9(5):367–375PubMedCrossRefGoogle Scholar
  7. Chen X, Su Z, Dam P, Palenik B, Xu Y, Jiang T (2004a) Operon prediction by comparative genomics: an application to the Synechococcus sp WH8102 genome. Nucl Acids Res 32(7):2147–2157PubMedCrossRefGoogle Scholar
  8. Chen X, Su Z, Xu Y, Jiang T (2004b) Computational prediction of operons in Synechococcus sp. WH8102. Genome Inform 15(2):211–222PubMedGoogle Scholar
  9. Dam P, Olman V, Harris K, Su Z, Xu Y (2007) Operon prediction using both genome-specific and general genomic information. Nucl Acids Res 35(1):288–298PubMedCrossRefGoogle Scholar
  10. Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23(9):324–328PubMedCrossRefGoogle Scholar
  11. de Daruvar A, Collado-Vides J, Valencia A (2002) Analysis of the cellular functions of Escherichia coli operons and their conservation in Bacillus subtilis. J Mol Evol 55(2):211–221PubMedCrossRefGoogle Scholar
  12. de Hoon MJ, Makita Y, Nakai K, Miyano S (2005) Prediction of transcriptional terminators in Bacillus subtilis and related species. PLoS Comput Biol 1(3):e25PubMedCrossRefGoogle Scholar
  13. Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK, Chivian D, Friedland GD, Huang KH, Keller K, Novichkov PS, Dubchak IL, Alm EJ, Arkin AP (2010) MicrobesOnline: an integrated portal for comparative and functional genomics. Nucl Acids Res 38(Database issue):D396–D400PubMedCrossRefGoogle Scholar
  14. Dufresne A, Garczarek L, Partensky F (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6(2):R14PubMedCrossRefGoogle Scholar
  15. Edwards MT, Rison SC, Stoker NG, Wernisch L (2005) A universally applicable method of operon map prediction on minimally annotated genomes using conserved genomic context. Nucl Acids Res 33(10):3253–3262PubMedCrossRefGoogle Scholar
  16. Ermolaeva MD, White O, Salzberg SL (2001) Prediction of operons in microbial genomes. Nucl Acids Res 29(5):1216–1221PubMedCrossRefGoogle Scholar
  17. Felsenstein J (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266:418–427PubMedCrossRefGoogle Scholar
  18. Felsenstein J (2008) Comparative methods with sampling error and within-species variation: contrasts revisited and revised. Am Nat 171(6):713–725PubMedCrossRefGoogle Scholar
  19. Galperin MY, Koonin EV (2000) Who’s your neighbor? New computational approaches for functional genomics. Nat Biotechnol 18(6):609–613PubMedCrossRefGoogle Scholar
  20. Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59(Pt 10):2510–2526PubMedCrossRefGoogle Scholar
  21. Gupta RS, Mathews DW (2010) Signature proteins for the major clades of cyanobacteria. BMC Evol Biol 10:24PubMedCrossRefGoogle Scholar
  22. Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48(6):723–739PubMedCrossRefGoogle Scholar
  23. Huynen M, Snel B, Lathe W, Bork P (2000) Exploitation of gene context. Curr Opin Struct Biol 10(3):366–370PubMedCrossRefGoogle Scholar
  24. Itoh T, Takemoto K, Mori H, Gojobori T (1999) Evolutionary instability of operon structures disclosed by sequence comparisons of complete microbial genomes. Mol Biol Evol 16(3):332–346PubMedCrossRefGoogle Scholar
  25. Jacob F, Monod J (1961a) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356PubMedCrossRefGoogle Scholar
  26. Jacob F, Monod J (1961b) On the regulation of gene activity. Cold Spring Harb Symp Quant Biol 26:193–211CrossRefGoogle Scholar
  27. Jacob E, Sasikumar R, Nair KN (2005) A fuzzy guided genetic algorithm for operon prediction. Bioinformatics 21(8):1403–1407PubMedCrossRefGoogle Scholar
  28. Janga SC, Lamboy WF, Huerta AM, Moreno-Hagelsieb G (2006) The distinctive signatures of promoter regions and operon junctions across prokaryotes. Nucl Acids Res 34(14):3980–3987PubMedCrossRefGoogle Scholar
  29. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EM, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311(5768):1737–1740PubMedCrossRefGoogle Scholar
  30. Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucl Acids Res 30:42–46PubMedCrossRefGoogle Scholar
  31. Kazakov AE, Cipriano MJ, Novichkov PS, Minovitsky S, Vinogradov DV, Arkin A, Mironov AA, Gelfand MS, Dubchak I (2007) RegTransBase—a database of regulatory sequences and interactions in a wide range of prokaryotic genomes. Nucl Acids Res 35(Database issue):D407–D412PubMedCrossRefGoogle Scholar
  32. Kettler GC, Martiny AC, Huang K, Zucker J, Coleman ML, Rodrigue S, Chen F, Lapidus A, Ferriera S, Johnson J, Steglich C, Church GM, Richardson P, Chisholm SW (2007) Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet 3(12):e231PubMedCrossRefGoogle Scholar
  33. Lawrence JG (2003) Gene organization: selection, selfishness, and serendipity. Annu Rev Microbiol 57:419–440PubMedCrossRefGoogle Scholar
  34. Lawrence JG, Roth JR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143(4):1843–1860PubMedGoogle Scholar
  35. Mao F, Dam P, Chou J, Olman V, Xu Y (2009) DOOR: a database for prokaryotic operons. Nucl Acids Res 37(Database issue):D459–D463PubMedCrossRefGoogle Scholar
  36. Marcotte EM (2000) Computational genetics: finding protein function by nonhomology methods. Curr Opin Struct Biol 10(3):359–365PubMedCrossRefGoogle Scholar
  37. Merino-Puerto V, Mariscal V, Mullineaux CW, Herrero A, Flores E (2010) Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocyst-forming cyanobacterium Anabaena sp. Mol Microbiol 75(5):1159–1170PubMedCrossRefGoogle Scholar
  38. Moreno-Hagelsieb G, Collado-Vides J (2002) A powerful non-homology method for the prediction of operons in prokaryotes. Bioinformatics 18(Suppl 1):S329–S336PubMedCrossRefGoogle Scholar
  39. Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103(35):13126–13131PubMedCrossRefGoogle Scholar
  40. Nakamura Y, Kaneko T, Hirosawa M, Miyajima N, Tabata S (1998) CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803. Nucl Acids Res 26(1):63–67PubMedCrossRefGoogle Scholar
  41. Nakao M, Okamoto S, Kohara M, Fujishiro T, Fujisawa T, Sato S, Tabata S, Kaneko T, Nakamura Y (2010) CyanoBase: the cyanobacteria genome database update 2010. Nucl Acids Res 38(Database issue):D379–D381PubMedCrossRefGoogle Scholar
  42. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res 27(1):29–34PubMedCrossRefGoogle Scholar
  43. Okuda S, Yoshizawa AC (2011) ODB: a database for operon organizations, 2011 update. Nucl Acids Res 39(Database issue):D552–D555PubMedCrossRefGoogle Scholar
  44. Okuda S, Katayama T, Kawashima S, Goto S, Kanehisa M (2006) ODB: a database of operons accumulating known operons across multiple genomes. Nucl Acids Res 34(Database issue):D358–D362PubMedCrossRefGoogle Scholar
  45. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96(6):2896–2901PubMedCrossRefGoogle Scholar
  46. Price MN, Huang KH, Alm EJ, Arkin AP (2005a) A novel method for accurate operon predictions in all sequenced prokaryotes. Nucl Acids Res 33(3):880–892PubMedCrossRefGoogle Scholar
  47. Price MN, Huang KH, Arkin AP, Alm EJ (2005b) Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Res 15(6):809–819PubMedCrossRefGoogle Scholar
  48. Price MN, Arkin AP, Alm EJ (2006) The life-cycle of operons. PLoS Genet 2(6):e96PubMedCrossRefGoogle Scholar
  49. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501PubMedCrossRefGoogle Scholar
  50. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111(MAR):1–61Google Scholar
  51. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424(6952):1042–1047PubMedCrossRefGoogle Scholar
  52. Rocha EP (2008) The organization of the bacterial genome. Annu Rev Genet 42:211–233PubMedCrossRefGoogle Scholar
  53. Rogozin IB, Makarova KS, Murvai J, Czabarka E, Wolf YI, Tatusov RL, Szekely LA, Koonin EV (2002a) Connected gene neighborhoods in prokaryotic genomes. Nucl Acids Res 30(10):2212–2223PubMedCrossRefGoogle Scholar
  54. Rogozin IB, Makarova KS, Natale DA, Spiridonov AN, Tatusov RL, Wolf YI, Yin J, Koonin EV (2002b) Congruent evolution of different classes of non-coding DNA in prokaryotic genomes. Nucl Acids Res 30(19):4264–4271PubMedCrossRefGoogle Scholar
  55. Sabatti C, Rohlin L, Oh MK, Liao JC (2002) Co-expression pattern from DNA microarray experiments as a tool for operon prediction. Nucl Acids Res 30(13):2886–2893PubMedCrossRefGoogle Scholar
  56. Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J (2000) Operons in Escherichia coli: genomic analyses and predictions. Proc Natl Acad Sci USA 97(12):6652–6657PubMedCrossRefGoogle Scholar
  57. Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F, Santos-Zavaleta A, Martinez-Flores I, Jimenez-Jacinto V, Bonavides-Martinez C, Segura-Salazar J, Martinez-Antonio A, Collado-Vides J (2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucl Acids Res 34:D394–D397PubMedCrossRefGoogle Scholar
  58. Sanchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3(3):145–165CrossRefGoogle Scholar
  59. Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-Pakrasi M, Pakrasi HB (2010) Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC Syst Biol 4:105PubMedGoogle Scholar
  60. Sivashankari S, Shanmughavel P (2006) Functional annotation of hypothetical proteins—a review. Bioinformation 1(8):335–338PubMedCrossRefGoogle Scholar
  61. Snel B, Bork P, Huynen MA (2002) The identification of functional modules from the genomic association of genes. Proc Natl Acad Sci USA 99(9):5890–5895PubMedCrossRefGoogle Scholar
  62. Steglich C, Futschik M, Rector T, Steen R, Chisholm SW (2006) Genome-wide analysis of light sensing in Prochlorococcus. J Bacteriol 188(22):7796–7806PubMedCrossRefGoogle Scholar
  63. Sun J, Xu J, Liu Z, Liu Q, Zhao A, Shi T, Li Y (2005) Refined phylogenetic profiles method for predicting protein–protein interactions. Bioinformatics 21(16):3409–3415PubMedCrossRefGoogle Scholar
  64. Swingley WD, Blankenship RE, Raymond J (2008) Integrating markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 25(4):643–654PubMedCrossRefGoogle Scholar
  65. Vijayan V, Jain IH, O’Shea EK (2011) A high resolution map of a cyanobacterial transcriptome. Genome Biol 12(5):R47PubMedCrossRefGoogle Scholar
  66. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucl Acids Res 31(1):258–261CrossRefGoogle Scholar
  67. Zhang GQ, Cao ZW, Luo QM, Cai YD, Li YX (2006) Operon prediction based on SVM. Comput Biol Chem 30(3):233–240PubMedCrossRefGoogle Scholar
  68. Zheng Y, Szustakowski JD, Fortnow L, Roberts RJ, Kasif S (2002) Computational identification of operons in microbial genomes. Genome Res 12(8):1221–1230PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Danish Memon
    • 1
    • 4
    • 2
  • Abhay K. Singh
    • 3
  • Himadri B. Pakrasi
    • 3
  • Pramod P. Wangikar
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Technology BombayMumbaiIndia
  2. 2.Bioinformatics CentreUniversity of PunePuneIndia
  3. 3.Department of BiologyWashington UniversitySt. LouisUSA
  4. 4.Cancer Research UK Applied Computational Biology and Bioinformatics Group, Paterson Institute for Cancer ResearchThe University of ManchesterManchesterUK

Personalised recommendations