Luteolibacter cuticulihirudinis sp. nov., isolated from Hirudo medicinalis

Abstract

A Gram-negative, coccoid shaped bacterium isolated from the outer surface of the medicinal leech Hirudo medicinalis was characterized. The 16S rRNA gene sequence comparison revealed that the bacterium was closely related to species of the genus Luteolibacter. Luteolibacter pohnpeiensis was the most closely related species (94.6 % sequence similarity), followed by Luteolibacter luojiensis (93.4 %) and Luteolibacter algae (93.3 %). Chemotaxonomic data (major ubiquinone: MK-9; major polar lipids: phosphatidylethanolamine and phosphatidylglycerol; and major fatty acids: iso-C14:0, C16:0, iso-C16:1, and anteiso-C15:0) supported the affiliation of the isolate to the genus Luteolibacter. DNA–DNA hybridizations with the type strain of L. pohnpeiensis was 31 % (reciprocal value 30 %). A phenotypic differentiation of strain E100T from L. pohnpeiensis and the other Luteolibacter species was possible by several physiological tests. We conclude Strain E100T represents a novel species, for which we propose the name Luteolibacter cuticulihirudinis sp. nov. with the type strain E100T (=CCM 8400T = LMG 26924T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide-sequence of a 16S ribosomal-RNA gene from Escherichia coli. PNAS 75:4801–4805

    PubMed  Article  CAS  Google Scholar 

  2. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470

    Article  CAS  Google Scholar 

  3. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    PubMed  Article  CAS  Google Scholar 

  4. Felsenstein J (1985) Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  5. Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  6. Groth I, Schumann P, Weiss N, Martin K, Rainey FA (1996) Agrococcus jenensis gen nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239

    PubMed  Article  CAS  Google Scholar 

  7. Jiang F, Li W, Yiao M, Dai J, Kan W, Chen L, Li W, Fang C, Peng F (2011) Luteolibacter luojiensis sp. nov., isolated from Arctic tundra soil, and emended description of the genus Luteolibacter. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.037309-0

    Google Scholar 

  8. Jukes TH, Cantor CR (1969) Evolution of the protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  9. Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  10. Kämpfer P, Steiof M, Dott W (1991) Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251

    Article  Google Scholar 

  11. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons Ltd., West Sussex, pp 115–147

    Google Scholar 

  12. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:363–1371

    Article  Google Scholar 

  13. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95

    Article  CAS  Google Scholar 

  14. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acid Res 35:7188–7196

    PubMed  Article  CAS  Google Scholar 

  15. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    PubMed  Article  CAS  Google Scholar 

  16. Wayne LG, Brenner DJ, Colwell RR et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Google Scholar 

  17. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rosselló-Móra R (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    PubMed  Article  CAS  Google Scholar 

  18. Yoon J, Matsuo Y, Adachi K, Nozawa M, Matsuda S, Kasai H, Yokota A (2008) Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov., and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int J Syst Evol Microbiol 58:998–1007

    PubMed  Article  Google Scholar 

  19. Ziemke F, Höfle MG, Lalucat J, Rosselló-Móra R (1998) Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Gundula Will, Carmen Schult, Maria Sowinsky and Anna Baum for excellent technical assistance and Dr. Jean Euzéby for his nomenclatural advice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Kämpfer.

Electronic supplementary material

Supplementary Fig. 1: Neighbor-joining tree showing the phylogenetic position of strain E100T within the Verrucomicrobiaceae. The tree was generated in ARB using ARB neighbor-joining (Jukes-Cantor, 100 bootstraps) and based on 16S rRNA gene sequences between positions 57 and 1454 (E. coli numbering; Brosius et al. 1978). GenBank accession numbers are given in parentheses. Numbers at branch nodes refer to bootstrap values >70 % (100 replicates). Victivallis vadensis CelloT and Lentisphaera araneosa HTCC 2155T were used as outgroups. Bar 0.10 substitutions per side

Supplementary material 1 (PS 1354 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Glaeser, S.P., Galatis, H., Martin, K. et al. Luteolibacter cuticulihirudinis sp. nov., isolated from Hirudo medicinalis . Antonie van Leeuwenhoek 102, 319–324 (2012). https://doi.org/10.1007/s10482-012-9741-z

Download citation

Keywords

  • Verrucomicrobia
  • Luteolibacter
  • New species
  • Luteolibacter cuticulihirudinis