Antonie van Leeuwenhoek

, Volume 101, Issue 4, pp 787–794 | Cite as

Oleispira lenta sp. nov., a novel marine bacterium isolated from Yellow sea coastal seawater in Qingdao, China

  • Yan Wang
  • Min Yu
  • Brian Austin
  • Xiao-Hua ZhangEmail author
Original Paper


The taxonomic position of strain DFH11T, which was isolated from coastal seawater off Qingdao, People’s Republic of China in 2007, was determined. Strain DFH11T comprised Gram-negative, motile, strictly aerobic spirilli that did not produce catalase. Comparative 16S rRNA gene sequence analysis revealed that strain DFH11T shared ~97.2, 93.3, 91.8, 91.7 and 91.5% sequence similarities with Oleispira antarctica, Spongiispira norvegica, Bermanella marisrubri, Oceaniserpentilla haliotis and Reinekea aestuarii, respectively. DNA–DNA hybridization experiments indicated that the strain was distinct from its closest phylogenetic neighbour, O. antarctica. The strain grew optimally in 2–3% (w/v) NaCl, at pH 5.0–10.0 (optimally at pH 7.0) and between 0 and 30°C (optimum growth temperature 28°C). The strain exhibited a restricted substrate profile, with a preference for aliphatic hydrocarbons, that is consistent with its closest phylogenetic neighbour O. antarctica. Growth of the isolate at different temperatures affected the cellular fatty acid profile. 28°C cultured cells contained C16:1ω7c and/or iso-C15:0 2-OH (50.4%) and C16:0 (19.2%) as the major fatty acids. However, the major fatty acids of the cells cultured at 4°C were C16:1ω7c and/or C16:1ω6c (40.2%), C16:0 (17.2%) and C17:1ω8c (10.1%). The G+C content of the genomic DNA was 42.7 mol%. Phylogeny based on 16S rRNA gene sequences together with data from DNA–DNA hybridization, phenotypic and chemotaxonomic characterization revealed that DFH11T should be classified as a novel species of the genus Oleispira, for which the name Oleispira lenta sp. nov. is proposed, with the type strain DFH11T (=NCIMB 14529T = LMG 24829T).


Oleispiralenta sp. nov. Taxonomy Yellow sea 



This work was supported by a grant from the National High Technology Research, Development Program of China (863 Program, No. 2007AA09Z434) and a grant from the National Natural Science Foundation of China (No. 40876067).

Supplementary material

10482_2011_9693_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 28 kb)
10482_2011_9693_MOESM2_ESM.tif (9 mb)
Supplementary material 2 (TIFF 9,242 kb)


  1. Arahal DR, Lekunberri I, Gonzalez JM, Pascual J, Pujalte MJ, Pedros-Alio C, Pinhassi J (2007) Neptuniibacter caesariensis gen. nov. sp. nov. a novel marine genome-sequenced gammaproteobacterium. Int J Syst Evol Microbiol 57:1000–1006PubMedCrossRefGoogle Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1995) Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology, 3rd edn. Wiley, New YorkGoogle Scholar
  3. Cowan ST, Steel KJ (1974) Cowan and Steel’s manual for the identification of medical bacteria, 2nd edn. Revised by Cowan ST. Cambridge University Press, CambridgeGoogle Scholar
  4. Dimitriu PA, Shukla SK, Conradt J, Marquez MC, Ventosa A, Maglia A, Peyton BM, Pinkart HC, Mormile M (2005) Nitrincola lacisaponensis gen. nov. sp. nov. a novel alkaliphilic bacterium isolated from an alkaline, saline lake. Int J Syst Evol Microbiol 55:2273–2278PubMedCrossRefGoogle Scholar
  5. Garrity GM (2005) The proteobacteria. In: Krieg NR, Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  6. Gartner A, Wiese J, Imhoff JF (2008) Amphritea atlantica gen. nov. sp. nov. a gammaproteobacterium from the Logatchev hydrothermal vent field. Int J Syst Evol Microbiol 58:34–39PubMedCrossRefGoogle Scholar
  7. Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. America Society for Microbiology, Washington DCGoogle Scholar
  8. Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov. a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186PubMedCrossRefGoogle Scholar
  9. Mesbah M, Whitman WB (1989) Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479:297–306PubMedCrossRefGoogle Scholar
  10. Pinhassi J, Pujalte MJ, Pascual J, Gonzalez JM, Lekunberri I, Pedros-Alio C, Arahal DR (2009) Bermanella marisrubri gen. nov. sp. nov. a genome-sequenced gammaproteobacterium from the Red Sea. Int J Syst Evol Microbiol 59:373–377PubMedCrossRefGoogle Scholar
  11. Romanenko LA, Schumann P, Rohde M, Mikhailov VV, Stackebrandt E (2004) Reinekea marinisedimentorum gen. nov. sp. nov. a novel gammaproteobacterium from marine coastal sediments. Int J Syst Evol Microbiol 54:669–673PubMedCrossRefGoogle Scholar
  12. Satomi M, Kimura B, Hamada T, Harayama S, Fujii T (2002) Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov. Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 52:739–747PubMedCrossRefGoogle Scholar
  13. Schlosser A, Lipski A, Schmalfuss J, Kugler F, Beckmann G (2008) Oceaniserpentilla haliotis gen. nov. sp. nov. a marine bacterium isolated from haemolyph serum of blacklip abalone. Int J Syst Evol Microbiol 58:2122–2125PubMedCrossRefGoogle Scholar
  14. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  15. Teramoto M, Ohuchi M, Hatmanti A, Darmayati Y, Widyastuti Y, Harayama S, Fukunaga Y (2011) Oleibacter marinus gen. nov. sp. nov. a novel bacterium that degrades petroleum aliphatic hydrocarbons in the tropical marine environment. Int J Syst Evol Microbiol 61:375–380PubMedCrossRefGoogle Scholar
  16. Wayne LG, Brenner DJ, Colwell RR et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  17. Xie CH, Yokota A (2003) Phylogenetic analysis of Lampropedia hyaline based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349PubMedCrossRefGoogle Scholar
  18. Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lünsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov. sp. nov. a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785PubMedCrossRefGoogle Scholar
  19. Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov. sp. nov. a marine bacterium confined to the utilization of hydrocarbons. Int J Syst Evol Microbiol 54:141–148PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Yan Wang
    • 1
    • 2
  • Min Yu
    • 1
  • Brian Austin
    • 3
  • Xiao-Hua Zhang
    • 1
    Email author
  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoPeople’s Republic of China
  2. 2.Department of Life Sciences and TechnologyXinxiang Medical UniversityXinxiangPeople’s Republic of China
  3. 3.Institute of AquacultureUniversity of StirlingStirlingUK

Personalised recommendations