Verminephrobacter aporrectodeae sp. nov. subsp. tuberculatae and subsp. caliginosae, the specific nephridial symbionts of the earthworms Aporrectodea tuberculata and A. caliginosa

Abstract

Clone library-based studies have shown that almost all lumbricid earthworm species harbour host-specific symbiotic bacteria belonging to the novel genus Verminephrobacter in their nephridia (excretory organs). To date the only described representative from this genus is Verminephrobacter eiseniae, the specific symbiont of the earthworm Eisenia fetida. In this study two novel rod-shaped, non-endosporeforming, betaproteobacterial symbionts were isolated from the nephridia of two closely related earthworm species. Both isolates were affiliated with the genus Verminephrobacter by 16S rRNA gene sequence analysis. Similarly to V. eiseniae, the two isolates grew aerobically with a preference for low oxygen concentrations on a range of sugars, fatty acids and amino acids and fermentatively on glucose and pyruvate. These phenotypes match well with the conditions reported or inferred for the nephridial environment. Based on 16S rRNA gene similarity, DNA–DNA hybridization value and phenotypic characteristics the two isolates are clearly distinct from V. eiseniae. Phenotypic characteristics could not clearly differentiate the two strains as separate species but a low DNA–DNA hybridization value of 57.3%, their earthworm host specificity, differing temperature ranges and pH optima suggest that they represent two subspecies of a novel species of Verminephrobacter. For this species, the name V. aporrectodeae sp. nov. is proposed, with the two subspecies V. aporrectodeae subsp. tuberculatae (type strain, At4T = DSM 21361T = LMG 25313T) and V. aporrectodeae subsp. caliginosae (type strain, Ac9T = DSM 21895T = LMG 25312T) isolated from the nephridia of the earthworms Aporrectodea tuberculata and A. caliginosa, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Berg P, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediment pore water. Limnol Oceanogr 43:1500–1510

    Article  CAS  Google Scholar 

  2. Cashion P, Holder Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    PubMed  Article  CAS  Google Scholar 

  3. Davidson SK, Stahl D (2006) Transmission of nephridial bacteria of the earthworm Eisenia fetida. Appl Environ Microbiol 72:769–775

    PubMed  Article  CAS  Google Scholar 

  4. Davidson S, Stahl D (2008) Selective recruitment of bacteria during embryogenesis of an earthworm. ISME J 2:510–518

    PubMed  Article  Google Scholar 

  5. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    PubMed  Article  Google Scholar 

  6. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v5.4, http://www.geneious.com/

  7. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    PubMed  Article  Google Scholar 

  8. Huss VAR, Festl H, Schleifer K-H (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  Google Scholar 

  9. Ingvorsen K, Jørgensen BB (1984) Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch Microbiol 139:61–66

    Article  CAS  Google Scholar 

  10. Knop J (1926) Bakterien und Bakteroiden bei Oligochäten. Z Morphol Oekol Tiere 6:588–624

    Article  Google Scholar 

  11. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  12. Lovley D (2006) Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes. Springer, New York, pp 635–658

    Google Scholar 

  13. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BuchnerA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    PubMed  Article  CAS  Google Scholar 

  14. Lund MB, Davidson SK, Holmstrup M, James S, Kjeldsen KU, Stahl DA, Schramm A (2010a) Diversity and host specificity of the Verminephrobacter-earthworm symbiosis. Environ Microbiol 12:2142–2151

    PubMed  CAS  Google Scholar 

  15. Lund MB, Holmstrup M, Lomstein B, Damgard C, Schramm A (2010b) Beneficial effect of Verminephrobacter nephridial symbionts on the fitness of the earthworm Aporrectodea tuberculata. Appl Environ Microbiol 76:4738–4743

    PubMed  Article  CAS  Google Scholar 

  16. Nussbaumer AD, Bright M, Baranyi C, Beisser CJ, Ott JA (2004) Attachment mechanism in a highly specific association between ectosymbiotic bacteria and marine nematodes. Aquat Microb Ecol 34:239–246

    Article  Google Scholar 

  17. Pandazis G (1931) Zur frage der bakteriensymbiose bei oligochäten. Zentbl Bakteriol: Parasitenkd Infekt 120:440–453

    Google Scholar 

  18. Pernthaler J, Glöckner F-O, Schönhuber W, Amann R (2001) Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods in Microbiol 30:207–226

    Article  CAS  Google Scholar 

  19. Pinel N, Davidson SK, Stahl DA (2008) Verminephrobacter eiseniae gen. nov. sp. nov. a nephridial symbiont of the earthworm Eisenia foetida (Savigny). Int J Syst Evol Microbiol 58:2147–2157

    PubMed  Article  CAS  Google Scholar 

  20. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    PubMed  Article  CAS  Google Scholar 

  21. Ramsay JA (1949) The site of formation of hypotonic urine in the nephridium of Lumbricus. J Exp Biol 26:65–75

    PubMed  CAS  Google Scholar 

  22. Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34:474–478

    Article  CAS  Google Scholar 

  23. Rouabah-Sadaoui L, Marcel R (1995) Glucids and lipids of clitellum and cocoon’s albumen in Eisenia fetida Sav (Annelida oligochaeta). Reprod Nutr Dev 35:537–548

    PubMed  Article  CAS  Google Scholar 

  24. Schramm A, Davidson S, Dodsworth J, Drake H, Stahl D, Dubilier N (2003) Acidovorax-like symbionts in the nephridia of earthworms. Environ Microbiol 5:804–809

    PubMed  Article  CAS  Google Scholar 

  25. Schweitzer B, Huber I, Amann R, Ludwig W, Simon M (2001) α- and β-proteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl Environ Microbiol 67:632–645

    PubMed  Article  CAS  Google Scholar 

  26. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. ASM press, Washington DC, pp 607–654

    Google Scholar 

  27. Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, Buhler JD, Gordon JI (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:1955–1959

    PubMed  Article  CAS  Google Scholar 

  28. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin HG, Harder M, Schleifer K-H (eds) The prokaryotes. Springer, New York, pp 3352–3378

    Google Scholar 

Download references

Acknowledgments

We thank Tove Wiegers and Britta Poulsen for excellent technical assistance and Rikke Louise Meyer for help with processing oxygen micro profiles. This study was financially supported by the Danish Research Council for Natural Sciences (grant 21-04-0410 to AS, and post-doctoral fellowship grant 272-05-313 to KUK).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marie B. Lund.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 599 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lund, M.B., Schätzle, S., Schramm, A. et al. Verminephrobacter aporrectodeae sp. nov. subsp. tuberculatae and subsp. caliginosae, the specific nephridial symbionts of the earthworms Aporrectodea tuberculata and A. caliginosa . Antonie van Leeuwenhoek 101, 507–514 (2012). https://doi.org/10.1007/s10482-011-9659-x

Download citation

Keywords

  • Acidovorax
  • Annelida
  • Earthworm
  • Extracellular symbiont
  • Nephridia
  • Symbiosis