Antonie van Leeuwenhoek

, Volume 100, Issue 2, pp 291–307 | Cite as

Occurrence of Vibrio parahaemolyticus and Vibrio alginolyticus in the German Bight over a seasonal cycle

  • Sonja Oberbeckmann
  • Antje Wichels
  • Karen H. Wiltshire
  • Gunnar Gerdts
Original Paper


Bacteria of the genus Vibrio are an important component of marine ecosystems worldwide. The genus harbors several human pathogens, for instance the species Vibrio parahaemolyticus, a main cause for foodborne gastroenteritis in Asia and the USA. Pathogenic V. parahaemolyticus strains emerged also in Europe, but little is known about the abundance, pathogenicity and ecology of V. parahaemolyticus especially in Northern European waters. This study focuses on V. parahaemolyticus and its close relative Vibrio alginolyticus in the North Sea (Helgoland Roads, Germany). Free-living, plankton-attached and shellfish-associated Vibrio spp. were quantified between May 2008 and January 2010. CFUs up to 4.3 × 103 N l−1 and MPNs up to 240 N g−1 were determined. Phylogenetic classification based on rpoB gene sequencing revealed V. alginolyticus as the dominant Vibrio species at Helgoland Roads, followed by V. parahaemolyticus. We investigated the intraspecific diversity of V. parahaemolyticus and V. alginolyticus using ERIC-PCR. The fingerprinting disclosed three distinct groups at Helgoland Roads, representing V. parahaemolyticus, V. alginolyticus and one group in between. The species V. parahaemolyticus occurred mainly in summer months. None of the strains carried the virulence-associated genes tdh or trh. We further analyzed the influence of nutrients, secchi depth, temperature, salinity, chlorophyll a and phytoplankton on the abundance of Vibrio spp. and the population structure of V. parahaemolyticus. Spearman Rank analysis revealed that particularly temperature correlated significantly with Vibrio spp. numbers. Based on multivariate statistical analyses we report that the V. parahaemolyticus population was structured by a complex combination of environmental parameters. To further investigate these influences is the key to understanding the dynamics of Vibrio spp. in temperate European waters, where this microbial group and especially the pathogenic species, are likely to gain in importance.


Vibrio parahaemolyticus rpoB gene Genomic fingerprinting Environmental parameters Multiple regression Correspondence analysis Helgoland Roads 


  1. Baffone W, Citterio B, Vittoria E, Casaroli A, Campana R, Falzano L, Donelli G (2003) Retention of virulence in viable but non-culturable Vibrio spp. Int J Food Microbiol 89:31–39PubMedCrossRefGoogle Scholar
  2. Baker-Austin C, Stockley L, Rangdale R, Martinez-Urtaza J (2010) Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. Environ Microbiol Rep 2:7–18CrossRefGoogle Scholar
  3. Bauer A, Rørvik L (2007) A novel multiplex PCR for the identification of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. Lett Appl Microbiol 45:371–375PubMedCrossRefGoogle Scholar
  4. Bauer A, Østensvik Ø, Florvåg M, Ørmen Ø, Rørvik LM (2006) Occurrence of Vibrio parahaemolyticus, V cholerae, and V. vulnificus in Norwegian Blue Mussels (Mytilus edulis). Appl Environ Microbiol 72:3058–3061PubMedCrossRefGoogle Scholar
  5. Belkin IM (2009) Rapid warming of large marine ecosystems. Prog Oceanogr 81:207–213CrossRefGoogle Scholar
  6. Bisharat N, Cohen DI, Maiden MC, Crook DW, Peto T, Harding RM (2007) The evolution of genetic structure in the marine pathogen, Vibrio vulnificus. Infect Gen Evol 7:685–693CrossRefGoogle Scholar
  7. Blackwell K, Oliver J (2008) The ecology of Vibrio vulnificus, Vibrio cholerae and Vibrio parahaemolyticus in North Carolina Estuaries. J Microbiol 46:146–153PubMedCrossRefGoogle Scholar
  8. Caburlotto G, Gennari M, Ghidini V, Tafi M, Lleo MM (2009) Presence of T3SS2 and other virulence-related genes in tdh-negative Vibrio parahaemolyticus; environmental strains isolated from marine samples in the area of the Venetian Lagoon, Italy. FEMS Microbiol Ecol 70:506–514PubMedCrossRefGoogle Scholar
  9. Caburlotto G, Haley BJ, Lleò MM, Huq A, Colwell RR (2010a) Serodiversity and ecological distribution of Vibrio parahaemolyticus in the Venetian Lagoon, Northeast Italy. Environ Microbiol Rep 2:151–157CrossRefGoogle Scholar
  10. Caburlotto G, Lleo MM, Hilton T, Huq A, Colwell RR, Kaper JB (2010b) Effect on human cells of environmental Vibrio parahaemolyticus strains carrying type III secretion system 2. Infect Immun 78:3280–3287PubMedCrossRefGoogle Scholar
  11. Cavallo RA, Stabili L (2002) Presence of vibrios in seawater and Mytilus galloprovincialis (Lam.) from the Mar Piccolo of Taranto (Ionian Sea). Water Res 36:3719–3726PubMedCrossRefGoogle Scholar
  12. Choi SY, Lee JH, Jeon YS et al (2010) Multilocus variable-number tandem repeat analysis of Vibrio cholerae O1 El Tor strains harbouring classical toxin B. J Med Microbiol 59:763–769PubMedCrossRefGoogle Scholar
  13. Clarke K, Gorley R (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, PlymouthGoogle Scholar
  14. Coppola E, Giorgi F (2010) An assessment of temperature and precipitation change projections over Italy from recent global and regional climate model simulations. Int J Climatol 30:11–32Google Scholar
  15. De Toni A, Touron-Bodilis A, Wallet F (2009) Impact of climate change on pathogenic aquatic microorganisms: some examples. Environ Risques Sante 8:311–321Google Scholar
  16. Defer D, Bourgougnon N, Fleury Y (2009) Screening for antibacterial and antiviral activities in three bivalve and two gastropod marine molluscs. Aquaculture 293:1–7CrossRefGoogle Scholar
  17. Deter J, Lozach S, Derrien A, Véron A, Chollet J, Hervio-Heath D (2010a) Chlorophyll a might structure a community of potentially pathogenic culturable Vibrionaceae Insights from a one-year study of water and mussels surveyed on the French Atlantic coast. Environ Microbiol Rep 2:185–191CrossRefGoogle Scholar
  18. Deter J, Solen L, Antoine V, Jaufrey C, Annick D, Dominique HH (2010b) Ecology of pathogenic and non-pathogenic Vibrio parahaemolyticus on the French Atlantic coast. Effects of temperature, salinity, turbidity and chlorophyll a. Environ Microbiol 12:929–937CrossRefGoogle Scholar
  19. Di Pinto A, Terio V, Novello L, Tantillo G (2011) Comparison between thiosulphate-citrate-bile salt sucrose (TCBS) agar and CHROMagar Vibrio for isolating Vibrio parahaemolyticus. Food Control 22(1):124–127CrossRefGoogle Scholar
  20. Drake SL, De Paola A, Jaykus LA (2007) An overview of Vibrio vulnificus and Vibrio parahaemolyticus. Compr Rev Food Sci Food Safety 6:120–144CrossRefGoogle Scholar
  21. Dulvy NK, Rogers SI, Jennings S, Stelzenmuller V, Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45:1029–1039CrossRefGoogle Scholar
  22. Eiler A, Johansson M, Bertilsson S (2006) Environmental influences on Vibrio populations in northern temperate and boreal coastal waters (Baltic and Skagerrak Seas). Appl Environ Microbiol 72:6004–6011PubMedCrossRefGoogle Scholar
  23. Eilers H, Pernthaler J, Glockner FO, Amann R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051PubMedCrossRefGoogle Scholar
  24. Ellingsen AB, Jorgensen H, Wagley S, Monshaugen M, Rorvik LM (2008) Genetic diversity among Norwegian Vibrio parahaemolyticus. J Appl Microbiol 105:2195–2202PubMedCrossRefGoogle Scholar
  25. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package). Department of Genetics, University of Washington, SeattleGoogle Scholar
  26. Feuerpfeil I, Szewzyk R, Hummel A (2002) Die mikrobiologischen Nachweisverfahren der neuen Trinkwasserverordnung (TrinkwV 2001). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 45:1006–1009CrossRefGoogle Scholar
  27. Giuliano L, De Domenico M, De Domenico E, Höfle MG, Yakimov MM (1999) Identification of culturable oligotrophic bacteria within naturally occurring bacterioplankton communities of the Ligurian Sea by 16S rRNA sequencing and probing. Microb Ecol 37:77–85PubMedCrossRefGoogle Scholar
  28. Grasshoff K, Kremling K, Ehrhardt M (eds) (1999) Methods of seawater analysis. Wiley-VCH, WeinheimGoogle Scholar
  29. Gugliandolo C, Irrera GP, Lentini V, Maugeri TL (2008) Pathogenic Vibrio, Aeromonas and Arcobacter spp. associated with copepods in the Straits of Messina (Italy). Mar Pollut Bull 56:600–606PubMedCrossRefGoogle Scholar
  30. Hazen T, Kennedy K, Chen S, Yi S, Sobecky P (2009) Inactivation of mismatch repair increases the diversity of Vibrio parahaemolyticus. Environ Microbiol 11:1254–1266PubMedCrossRefGoogle Scholar
  31. Honda T, Iida T (1993) The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct haemolysin and related haemolysins. Rev Med Microbiol 4:106–113Google Scholar
  32. Honda T, Ni Y, Miwatani T (1989) Purification of a tdh-related hemolysin produced by a Kanagawa phenomenon-negative clinical isolate of Vibrio parahaemolyticus 06–K46. FEMS Microbiol Lett 57:241–246Google Scholar
  33. Honda T, Abad-Lapuebla M, Ni Y, Yamamoto K, Miwatani T (1991) Characterization of a new thermostable direct haemolysin produced by a Kanagawa-phenomenon-negative clinical isolate of Vibrio parahaemolyticus. J Gen Microbiol 137:253–259PubMedGoogle Scholar
  34. Hsieh JL, Fries JS, Noble RT (2007) Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary. Ecol Appl 17:102–109CrossRefGoogle Scholar
  35. Hsieh JL, Fries JS, Noble RT (2008) Dynamics and predictive modelling of Vibrio spp. in the Neuse River Estuary, North Carolina, USA. Environ Microbiol 10:57–64PubMedGoogle Scholar
  36. Hubert F, van der Knaap W, Noël T, Roch P (1996) Cytotoxic and antibacterial properties of Mytilus galloprovincialis, Ostrea edulis and Crassostrea gigas (Bivalve Molluscs) hemolymph. Aquat Living Resour 9:115–124CrossRefGoogle Scholar
  37. Hulton C, Higgins C, Sharp P (1991) ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834PubMedCrossRefGoogle Scholar
  38. Izutsu K, Kurokawa K, Tashiro K, Kuhara S, Hayashi T, Honda T, Iida T (2008) Comparative genomic analysis using microarray demonstrates a Strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains. Infect Immun 76:1016–1023PubMedCrossRefGoogle Scholar
  39. Jark U, Kirschke C (2009) Qualitativer Nachweis von Vibrionen. Laves Institut für Fische und Fischereierzeugnisse, CuxhavenGoogle Scholar
  40. Ki J, Zhang R, Zhang W, Huang Y, Qian P (2009) Analysis of RNA polymerase beta subunit (rpoB) gene sequences for the discriminative power of marine vibrio species. Microb Ecol 58:679–691PubMedCrossRefGoogle Scholar
  41. Kim YB, Okuda J, Matsumoto C, Takahashi N, Hashimoto S, Nishibuchi M (1999) Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J Clin Microbiol 37:1173–1177PubMedGoogle Scholar
  42. Kobayashi T, Enomoto S, Sakazaki R, Kuwahara S (1963) A new selective isolation medium for the Vibrio group; on a modified Nakanishis’s medium (TCBS agar medium). Nippon Saikingaku Zasshi 18:387–392PubMedGoogle Scholar
  43. Lhafi SK, Kühne M (2007) Occurrence of Vibrio spp. in blue mussels (Mytilus edulis) from the German Wadden Sea. Int J Food Microbiol 116:297–300PubMedCrossRefGoogle Scholar
  44. Lin Z, Kumagai K, Baba K, Mekalanos JJ, Nishibuchi M (1993) Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. J Bacteriol 175:3844–3855PubMedGoogle Scholar
  45. Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  46. Mahoney JC, Gerding MJ, Jones SH, Whistler CA (2010) Comparison of the pathogenic potentials of environmental and clinical Vibrio parahaemolyticus strains indicates a role for temperature regulation in virulence. Appl Environ Microbiol 76:7459–7465PubMedCrossRefGoogle Scholar
  47. Martinez-Urtaza J, Simental L, Velasco D et al (2005) Pandemic Vibrio parahaemolyticus O3:K6, Europe. Emerg Infect Dis 11:1319–1320PubMedGoogle Scholar
  48. Martinez-Urtaza J, Lozano-Leon A, Varela-Pet J, Trinanes J, Pazos Y, Garcia-Martin O (2008) Environmental determinants of the occurrence and distribution of Vibrio parahaemolyticus in the rias of Galicia, Spain. Appl Environ Microbiol 74:265–274PubMedCrossRefGoogle Scholar
  49. Mills JN, Gage KL, Khan AS (2010) Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect 118:1507–1514PubMedCrossRefGoogle Scholar
  50. Mollet C, Drancourt M, Raoult D (1997) rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26:1005–1011PubMedCrossRefGoogle Scholar
  51. Mourino-Perez RR, Worden AZ, Azam F (2003) Growth of Vibrio cholerae O1 in red tide waters off California. Appl Environ Microbiol 69:6923–6931PubMedCrossRefGoogle Scholar
  52. Nishibuchi M, Kaper JB (1985) Nucleotide sequence of the thermostable direct hemolysin gene of Vibrio parahaemolyticus. J Bacteriol 162:558–564PubMedGoogle Scholar
  53. Nishibuchi M, Taniguchi T, Misawa T, Khaeomaneeiam V, Honda T, Miwatani T (1989) Cloning and nucleotide-sequence of the gene (trh) encoding the hemolysin related to the thermostable direct hemolysin of V. parahaemolyticus. Inf Immun 57:2691–2697Google Scholar
  54. Oberbeckmann S, Wichels A, Maier T, Kostrzewa M, Raffelberg S, Gerdts G (2011) A polyphasic approach for the differentiation of environmental Vibrio isolates from temperate waters. FEMS Microbiol Ecol 75:145–162PubMedCrossRefGoogle Scholar
  55. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100PubMedGoogle Scholar
  56. Pernthaler J, Glöckner FO, Schönhuber W, Amann R (2001) Fluorescence in situ hybridisation. In: Paul J (ed) Methods in microbiology: marine microbiology, vol 30. Academic Press Ltd, LondonGoogle Scholar
  57. Ravel J, Knight IT, Monahan CE, Hill RT, Colwell RR (1995) Temperature-induced recovery of Vibrio cholerae from the viable but nonculturable state: growth or resuscitation? Microbiology 141:377–383PubMedCrossRefGoogle Scholar
  58. Rawlings TK, Ruiz GM, Colwell RR (2007) Association of Vibrio cholerae O1 El Tor and O139 Bengal with the copepods Acartia tonsa and Eurytemora affinis. Appl Environ Microbiol 73:7926–7933PubMedCrossRefGoogle Scholar
  59. Rodriguez-Castro A, Ansede-Bermejo J, Blanco-Abad V, Varela-Pet J, Garcia-Martin O, Martinez-Urtaza J (2010) Prevalence and genetic diversity of pathogenic populations of Vibrio parahaemolyticus in coastal waters of Galicia, Spain. Environ Microbiol Rep 2:58–66CrossRefGoogle Scholar
  60. Sapp M, Wichels A, Wiltshire KH, Gerdts G (2007) Bacterial community dynamics during the winter-spring transition in the North Sea. FEMS Microbiol Ecol 59:622–637PubMedCrossRefGoogle Scholar
  61. Schets F, van den Berg HHJL, Rutjes SA, de Roda Husman AM (2010) Pathogenic Vibrio species in Dutch shellfish destined for direct human consumption. J Food Prot 73:734–738PubMedGoogle Scholar
  62. Sobrinho PdSC, Destro MT, Franco BDGM, Landgraf M (2010) Correlation between environmental factors and prevalence of Vibrio parahaemolyticus in oysters harvested in the southern coastal area of Sao Paulo state, Brazil. Appl Environ Microbiol 76:1290–1293CrossRefGoogle Scholar
  63. Su YC, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24:549–558PubMedCrossRefGoogle Scholar
  64. Tada J, Ohashi T, Nishimura N et al (1992) Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction. Mol Cell Probes 6:477–487PubMedCrossRefGoogle Scholar
  65. Tarr C, Patel J, Puhr N, Sowers E, Bopp C, Strockbine N (2007) Identification of Vibrio isolates by a multiplex PCR assay and rpoB sequence determination. J Clin Microbiol 45:134–140PubMedCrossRefGoogle Scholar
  66. Terzi G, Gucukoglu A (2010) Effects of lactic acid and chitosan on the survival of V. parahaemolyticus in Mussel Samples. J Anim Vet Adv 9:990–994CrossRefGoogle Scholar
  67. Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF (2004) Diversity and dynamics of a north Atlantic coastal Vibrio community. Appl Environ Microbiol 70:4103–4110PubMedCrossRefGoogle Scholar
  68. Turner JW, Good B, Cole D, Lipp EK (2009) Plankton composition and environmental factors contribute to Vibrio seasonality. ISME J 3:1082–1092PubMedCrossRefGoogle Scholar
  69. UK Health Protection Agency (2009) Guidelines for assessing the microbiological safety of ready-to-eat foods. Health Protection Agency, LondonGoogle Scholar
  70. U.S. Food Drug Administration (USFDA) (2011) Fish and fisheries products hazards and controls guidance. (Appendix 5—FDA & EPA safety levels in regulations and guidance). USFDA, Silver Spring.
  71. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Plankton-Methodik. Mitt Int Verein Theor Angew Limnol 9:1–38Google Scholar
  72. Versalovic J, Koeuth T, Lupski R (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831PubMedCrossRefGoogle Scholar
  73. Vezzulli L, Pezzati E, Moreno M, Fabiano M, Pane L, Pruzzo C, Consortium TV (2009) Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Environ Microbiol 58:808–818Google Scholar
  74. Vezzulli L, Previati M, Pruzzo C, Marchese A, Bourne DG, Cerrano C, The VibrioSea Consortium (2010) Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ Microbiol 12:2007–2019PubMedCrossRefGoogle Scholar
  75. Whitaker WB, Parent MA, Naughton LM, Richards GP, Blumerman SL, Boyd EF (2010) Modulation of responses of Vibrio parahaemolyticus O3:K6 to pH and temperature stresses by growth at different salt concentrations. Appl Environ Microbiol 76:4720–4729PubMedCrossRefGoogle Scholar
  76. Wiltshire KH, Manly BFJ (2004) The warming trend at Helgoland Roads, North Sea: Phytoplankton response. Helgoland Mar Res 58:269–273CrossRefGoogle Scholar
  77. Wiltshire KH, Kraberg A, Bartsch I et al (2010) Helgoland roads, North Sea: 45 years of change. Estuaries Coasts 33:295–310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sonja Oberbeckmann
    • 1
  • Antje Wichels
    • 1
  • Karen H. Wiltshire
    • 1
  • Gunnar Gerdts
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt HelgolandHelgolandGermany

Personalised recommendations