Skip to main content
Log in

Changes in hyphal morphology and activity of phenoloxidases during interactions between selected ectomycorrhizal fungi and two species of Trichoderma

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Patterns of phenoloxidase activity can be used to characterize fungi of different life styles, and changes in phenoloxidase synthesis were suspected to play a role in the interaction between ectomycorrhizal and two species of Trichoderma. Confrontation between the ectomycorrhizal fungi Amanita muscaria and Laccaria laccata with species of Trichoderma resulted in induction of laccase synthesis, and the laccase enzyme was bound to mycelia of ectomycorrhizal fungi. Tyrosinase release was noted only during interaction of L. laccata strains with Trichoderma harzianum and T. virens. Ectomycorrhizal fungi, especially strains of Suillus bovinus and S. luteus, inhibited growth of Trichoderma species and caused morphological changes in its colonies in the zone of interaction. In contrast, hyphal changes occurred less often in the ectomycorrhizal fungi tested. Species of Suillus are suggested to present a different mechanism in their interaction with other fungi than A. muscaria and L. laccata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Arora DS, Sandhu DK (1985) Laccase production and wood degradation by a white-rot fungus Daedalea flavida. Enzym Microb Tech 1985:405–408

    Article  Google Scholar 

  • Baar J, Stanton NL (2000) Ectomycorrhizal fungi challenged by saprotrophic basidiomycetes and soil microfungi under different ammonium regimes in vitro. Mycol Res 104:691–697

    Article  Google Scholar 

  • Baldrian P (2009) Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia 161:657–660

    Article  PubMed  Google Scholar 

  • Burke RM, Cairney JWG (2002) Laccases and other polyphenol oxidases in ecto- and ecricoid mycorrhizal fungi. Mycorrhiza 12:105–116

    Article  PubMed  CAS  Google Scholar 

  • Courty PE, Hoegger PJ, Kilaru S, Kohler A, Buée M, Garbaye J, Martin F, Kües U (2009) Phylogenetic analysis, genomic organization, and expression analysis of multi-copper in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytol 182:736–750

    Article  PubMed  CAS  Google Scholar 

  • Cullings K, Ishkhanova G, Henson J (2008) Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park. Oecologia 158:77–83

    Article  PubMed  Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    Article  PubMed  CAS  Google Scholar 

  • Gramss G, Günther Th, Fritsche W (1998) Spot tests for oxidative enzymes in ectomycorrhizal, wood-, and litter decaying fungi. Mycol Res 102:67–72

    Article  CAS  Google Scholar 

  • Haselwandter K, Bobleter O, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153:352–354

    Article  CAS  Google Scholar 

  • Hibbett DS, Gilbert LB, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508

    Article  PubMed  CAS  Google Scholar 

  • Hutchison LJ (1990) Studies on the systematics of ectomycorrhizal fungi in axenic culture. III. Patterns of polyphenol oxidase activity. Mycologia 82(4):424–435

    Article  CAS  Google Scholar 

  • Iakovlev A, Stenlid J (2000) Spatiotemporal patterns of laccase activity in interacting mycelia of wood-decaying basidiomycete fungi. Microb Ecol 39:236–245

    PubMed  CAS  Google Scholar 

  • Koide RT, Sharda JN, Herr JR, Malcolm GM (2008) Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytol 178:230–233

    Article  PubMed  Google Scholar 

  • Leake JR, Donnelly DP, Boddy L (2002) Interactions between ecto-mycorrhizal and saprotrophic fungi. In: van der Heijden MAG, Sanders IR (eds) Mycorrhizal ecology. Springer-Verlag, Berlin, pp 345–372

    Google Scholar 

  • Lindahl B, Stenlid J, Finlay R (2001) Effects of resource availability on mycelial interactions and 32P transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosm. FEMS Microbiol Ecol 38:43–52

    Article  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buee M, Brokstein P, Canbeck B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbe J, Lin YC, Legue V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kues U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouze P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights to mycorrhizal symbiosis. Nature 452:88–92

    Article  PubMed  CAS  Google Scholar 

  • Minussi RC, de Moraes SG, Pastore GM, Durán N (2001) Biodecolorization screening of synthetic dyes by four white-rot fungi in a solid medium: possible role of siderophores. Lett Appl Microbiol 33:21–25

    Article  PubMed  CAS  Google Scholar 

  • Miranda M, Bonfigli A, Zarivi O, Ragnelli AM, Pacioni G, Botti D (1992) Truffle tyrosinase—properties and activity. Plant Sci 81:175–182

    Article  CAS  Google Scholar 

  • Mucha J, Dahm H, Strzelczyk E, Werner A (2006) Synthesis of enzymes connected with mycoparasitism by ectomycorrhizal fungi. Arch Microbiol 185:69–77

    Article  PubMed  CAS  Google Scholar 

  • Mucha J, Dahm H, Werner A (2007) Influence of autoclaved saprotrophic fungal mycelia on proteolytic activity in ectomycorrhizal fungi. Antonie van Leeuwenhoek 92:137–142

    Article  PubMed  Google Scholar 

  • Mucha J, Zadworny M, Werner A, Napierala-Filipiak A, Lakomy P (2008) Antagonistic activity of the ectomycorrhizal fungus Suillus bovinus challenged by saprotrophic fungi from different soils. Nova Hedwigia 87:373–385

    Article  Google Scholar 

  • Pachlewski R (1983) Symbiotic fungi and mycorrhiza of Scots pine (Pinus sylvestris L.). IBL Works. PWRiL Varsow 165:1–133

    Google Scholar 

  • Rizzo DM, Blanchette RA, Palmer MA (1992) Biosorption of metal ions by Armillaria rhizomorphs. Can J Bot 70:1515–1520

    Article  CAS  Google Scholar 

  • Score AJ, Palfreyman JW, White NA (1997) Extracellular phenoloxidase and peroxidase enzyme production during interspecific fungal interactions. Int Biodeter Biodegr 39:225–233

    Article  CAS  Google Scholar 

  • Summerbell R (1987) The inhibitory effect of Trichoderma species and other soil microfungi on formation of mycorrhiza by Laccaria bicolor in vitro. New Phytol 105:437–448

    Article  Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963

    Article  Google Scholar 

  • Timonen S, Sen R (1998) Heterogeneity of fungal and plant enzyme expression in intact Scots pine-Suillus bovinus and–Paxillus involutus mycorrhizospheres developed in natural forest humus. New Phytol 138:355–366

    Article  Google Scholar 

  • Werner A, Zadworny M, Idzikowska K (2002) Interaction between Laccaria laccata and Trichoderma virens in co-culture and in the rhizosphere of Pinus sylvestris grown in vitro. Mycorrhiza 12:139–145

    Article  PubMed  Google Scholar 

  • White NA, Boddy L (1992) Extracellular enzyme localization during interspecific fungal interactions. FEMS Microbiol Lett 98:75–80

    Article  CAS  Google Scholar 

  • Wood DA (1985) Production and roles of extracellular enzymes during morphogenesis of Basidiomycete fungi. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds) Developmental biology of higher fungi. Cambridge University Press, Cambridge, pp 375–387

    Google Scholar 

  • Zadworny M, Werner A, Idzikowska K (2004) Behaviour of the hyphae of Laccaria laccata in the presence of Trichoderma harzianum in vitro. Mycorrhiza 14:401–405

    Article  PubMed  Google Scholar 

  • Zadworny M, Górski Z, Koczorowska E, Werner A (2008) Conidia of Trichoderma virens as a phosphorus source for mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 19:61–66

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

I would like to thank my supervisor, Prof. Dr. Antoni Werner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Mucha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mucha, J. Changes in hyphal morphology and activity of phenoloxidases during interactions between selected ectomycorrhizal fungi and two species of Trichoderma . Antonie van Leeuwenhoek 100, 155–160 (2011). https://doi.org/10.1007/s10482-011-9556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9556-3

Keywords

Navigation