Skip to main content
Log in

Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The present study was undertaken to determine the role of glutathione peroxidase3 (gpx3) in phospholipid protection in cells. Wild-type (WT) cells showed an overall increase in phospholipids upon 50 μM cadmium (Cd)-treatment, whereas an untreated gpx3Δ strain showed a drastic reduction in overall phospholipids which was further reduced with 50 μM Cd. In WT cells, Cd-exposure increased the short chain fatty acids and decreased the unsaturated fatty acids and the magnitude was high in Cd-treated gpx3Δ cells. Purified recombinant gpx3p showed higher activity with phospholipid hydroperoxides than shorter hydroperoxides. An increase in gpx activity was observed in Cd-treated WT cells and no such alteration was observed in gpx3Δ. WT cells treated with Cd showed an increase in MDA over untreated, while untreated gpx3Δ cells themselves showed a higher level of MDA which was further enhanced with Cd-treatment. Iron, zinc and calcium levels were significantly altered in WT and gpx3Δ cells during Cd-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Netherlands)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

CL:

Cardiolipin

Gpx:

Glutathione peroxidase

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

LPL:

Lysophospholipids

MDA:

Malondialdehyde

Ni2+NTA:

nickel nitrilo acetic acid-agarose

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PHGpx:

Phospholipid hydroperoxide glutathione peroxidase

PI:

Phosphatidylinositol

PLOOH:

Phospholipid hydroperoxide

PS:

Phosphatidylserine

ROS:

Reactive oxygen species

References

  • Aguilar PS, de Mendoza D (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62:1507–1514

    Article  PubMed  CAS  Google Scholar 

  • Arthur JR (2000) The glutathione peroxidises. Cell Mol Life Sci 57:1825–1835

    Article  PubMed  CAS  Google Scholar 

  • Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735

    Article  PubMed  CAS  Google Scholar 

  • Avery AM, Willetts SA, Avery SV (2004) Genetic dissection of the phospholipid hydroperoxidase activity of yeast gpx3 reveals its functional importance. J Biol Chem 279:46652–46658

    Article  PubMed  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carman GM, Han GS (2009) Regulation of phospholipid biosynthesis in yeast. J Lipid Res 50:69–73

    Article  Google Scholar 

  • De Vos CHR, Bookum WMT, Vooijs R, Schat H, De Kok LJ (1993) Effects of copper on fatty acid composition and peroxidation of lipids in the roots of copper tolerant and sensitive Silene cucubalas. Plant Physiol Biochem 31:151–158

    Google Scholar 

  • Doner G, Ege A (2004) Evaluation of digestion procedures of the determination of iron and zinc in biscuits by flame atomic absorption spectrometry. Anal Chim Acta 520:217–222

    Article  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxy nonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  • Falcone DL, Ogas JP, Somerville CR (2004) Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol 4:17

    Article  PubMed  Google Scholar 

  • Ghosh AK, Ramakrishnan G, Rajasekharan R (2008) YLR099C (ICT1) encodes a soluble acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J Biol Chem 283:9768–9775

    Article  PubMed  CAS  Google Scholar 

  • Girault L, Boudou A, Dufourc E (1998) 113Cd-, 31P-NMR and fluorescence polarization studies of cadmium (II) interactions with phospholipids in model membranes. Biochim Biophys Acta 1414:140–154

    Article  PubMed  CAS  Google Scholar 

  • Girotti W (1985) Mechanisms of lipid peroxidation. Free Radic Biol Med 1:87–95

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Iwanyshyn WM, Han GS, Carman GM (2004) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc. J Biol Chem 279:21976–21983

    Article  PubMed  CAS  Google Scholar 

  • Jain A, Martensson J, Mehta T, Krauss AN, Auld PA, Meister A (1992) Ascorbic acid prevents oxidative stress in glutathione-deficient mice: effects on lung type 2 cell lamellar bodies, lung surfactant, and skeletal muscle. PNAS 89:5093–5097

    Article  PubMed  CAS  Google Scholar 

  • Kriska T, Girotti A (2004) Separation and quantitation of peroxidized phospholipids using high-performance thin-layer chromatography with tetramethyl-P-phenylenediamine detection. Anal Biochem 327:97–106

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lambert AJ, Brand MD (2009) Reactive oxygen species production by mitochondria. Methods Mol Biol 554:165–181

    Article  PubMed  CAS  Google Scholar 

  • Lesuisse E, Labbe P (1995) Effects of cadmium and of YAP1 and CAD1/YAP2 genes on iron metabolism in the yeast Saccharomyces cerevisiae. Microbiology 141:2937–2943

    Article  PubMed  CAS  Google Scholar 

  • Maiorino M, Gregolin C, Ursini F (1990) Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol 186:448–457

    Article  PubMed  CAS  Google Scholar 

  • Martin CE, Oh CS, Jiang Y (2007) Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta 1771:271–285

    PubMed  CAS  Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J Lipid Res 5:600–608

    PubMed  CAS  Google Scholar 

  • Muthukumar K, Nachiappan V (2010) Cadmium-induced oxidative stress in Saccharomyces cerevisiae. Indian J Biochem Biophys 47:383–387

    PubMed  Google Scholar 

  • Patrick L (2003) Toxic metals and antioxidants: part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev 8:106–128

    PubMed  Google Scholar 

  • Pinkart HC, White DC (1997) Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J Bacteriol 179:4219–4226

    PubMed  CAS  Google Scholar 

  • Rattray JB, Schibeci A, Kidby DK (1975) Lipids of yeast. Bacteriol Rev 39:197–231

    PubMed  CAS  Google Scholar 

  • Sanni B, Williams K, Sokolov EP, Sokolova IM (2008) Effects of acclimation temperature and cadmium exposure on mitochondrial aconitase and LON protease from a model marine ectotherm, Crassostrea virginica. Comp Biochem Physiol 147:101–112

    Google Scholar 

  • Schlame M, Ren M, Xu Y, Greenberg ML, Haller I (2005) Molecular symmetry in mitochondrial cardiolipins. Chem Phys Lipids 138:38–49

    Article  PubMed  CAS  Google Scholar 

  • Siakotos AN, Rouser G, Fleischer S (1966) Phospholipid composition of human, bovine and frog myelin isolated on a large scale from brain and spinal cord. Lipids 1:85–86

    Article  PubMed  Google Scholar 

  • Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140:569–576

    Article  PubMed  CAS  Google Scholar 

  • Steffensen L, Mesna OJ, Andruchow E, Namork E, Hylland K, Andersen RA (1994) Cytotoxicity and accumulation of Hg, Ag, Cd, Cu, Pb and Zn in human peripheral T and B lymphocytes and monocytes in vitro. Gen Pharmacol 251:621–1633

    Google Scholar 

  • Sumner ER, Shanmuganathan A, Sideri TC, Willetts SA, Houghton JE, Avery SV (2005) Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151:1939–1948

    Article  PubMed  CAS  Google Scholar 

  • Suwalsky M, Villena F, Norris B, Cuevas F, Sotomayor CP (2004) Cadmium-induced changes in the membrane of human erythrocytes and molecular models. J Inorg Biochem 98:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326

    Article  PubMed  CAS  Google Scholar 

  • Thorsen M, Perrone GG, Kristiansson E, Traini M, Yel T, Dawes IW, Nerman O, Tamas MJ (2009) Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genomics 10:105–120

    Article  PubMed  Google Scholar 

  • Ursini F, Maiorino M, Brigelius-Flohe R, Aumann KD, Roveri A, Schomburg D, Flohe L (1995) Diversity of glutathione peroxidises. Methods Enzymol 252:38–53

    Article  PubMed  CAS  Google Scholar 

  • Vijayaraj P, Sabarirajan J, Nachiappan V (2010) Enhanced phospholipase B activity and alteration of phospholipids and neutral lipids in Saccharomyces cerevisiae exposed to N-nitrosonornicotine. Antonie van Leeuwenhoek. doi:10.1007/s10482-010-9526-1

  • Vossen RCRM, Dam-Mieras MCE, van Hornstra G, Zwaal RFA (1995) Differential effects of endothelial cell fatty acid modification on the sensitivity of their membrane phospholipids to peroxidation. Prostaglandins Leukot Essent Fatty Acids 52:341–347

    Article  PubMed  CAS  Google Scholar 

  • Wagner S, Paltauf F (1994) Generation of glycerophospholipid molecular species in the yeast Saccharomyces cerevisiae. Fatty acid pattern of phospholipid classes and selective acyl turnover at sn-1 and sn-2 positions. Yeast 10:1429–1437

    Article  PubMed  CAS  Google Scholar 

  • Wolff SP (1994) Ferrous oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182–189

    Article  CAS  Google Scholar 

  • Inoue Yoshiharu, Matsuda T, Sugiyama K-I, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002–27009

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The financial support from Bharathidasan University, Tiruchirappalli, Tamilnadu, India is gratefully acknowledged.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasanthi Nachiappan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthukumar, K., Rajakumar, S., Sarkar, M.N. et al. Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress. Antonie van Leeuwenhoek 99, 761–771 (2011). https://doi.org/10.1007/s10482-011-9550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9550-9

Keywords

Navigation