Skip to main content
Log in

Rhodotorula taiwanensis sp. nov., a novel yeast species from a plant in Taiwan

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel anamorphic yeast strain, A1-01T, belonging to the genus Rhodotorula was isolated from a plant in Taiwan and analysed morphologically, physiologically and phylogenetically. Neither ballistoconidia nor sexual reproduction was observed. Sequence analysis of the 26S rRNA gene and the ITS region indicate that Rhodosporidium sphaerocarpum is the most closely related species, with 14 and 24 nucleotide substitutions, respectively. The novel species differed physiologically from R. sphaerocarpum in its ability to assimilate ethylamine and cadaverine, its inability to assimilate ethanol and nitrite. From these comparative analyses, the following novel yeast species is proposed: Rhodotorula taiwanensis sp. nov. with the type strain of A1-01T (BCRC 23118T = CBS 11729T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Biswas SK, Yokoyama K, Nishimura K, Miyaji M (2001) Molecular phylogenetics of the genus Rhodotorula and related basidiomycetous yeasts inferred from the mitochondrial cytochrome b gene. Int J Syst Evol Microbiol 51:1191–1199

    CAS  PubMed  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (2004) PHYLIP (phylogenetic inference package), version 3.6. Distributed by the author. Department of Genome Sciences and Department of Biology, University of Washington, Seattle

  • Fonseca A, Scorzetti G, Fell JW (2000) Diversity in the yeast Cryptococcus albidus and related species as revealed by ribosomal DNA sequence analysis. Can J Microbiol 46:7–27

    Article  CAS  PubMed  Google Scholar 

  • Gadanho M, Sampaio JP (2002) Polyphasic taxonomy of the basidiomycetous yeast genus Rhodotorula: Rh. glutinis sensu stricto and Rh. dairenensis comb nov. FEMS Yeast Res 2:47–58

    CAS  PubMed  Google Scholar 

  • Hamamoto M, Nagahama T, Tamura M (2002) Systematic study of basidiomycetous yeasts evaluation of the ITS regions of rDNA to delimit species of the genus Rhodosporidium. FEMS Yeast Res 2:409–413

    CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  • Libkind D, Brizzio S, Ruffini A, Gadanho M, van Broock M, Paulo Sampaio J (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuwenhoek 84:313–322

    Article  CAS  PubMed  Google Scholar 

  • Nagahama T, Hamamoto M, Horikoshi K (2006) Rhodotorula pacifica sp. nov., a novel yeast species from sediment collected on the deep-sea floor of the north-west pacific ocean. Int J Syst Evol Microbiol 56:95–299

    Article  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Suh SO, Takashhima M, Nakase T (1996) Phylogenetic study of the anamorphic basidiomycetous yeasts Rhodotorula lactosa and R. minuta, and related taxa based on 18S ribosomal DNA sequences. J Gen Appl Microbiol 42:1–6

    Article  CAS  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M et al (eds) PCR protocols: a guide to methods and applications. Academic Press, Orlando, pp 315–322

    Google Scholar 

  • Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 77–100

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Drs. S. K. Chen, C. C. Liao and G. F. Yuan (Food Industry Research and Development Institute, Taiwan, ROC) for their encouragement. This research was supported by Ministry of Economic Affairs, ROC (project no. 99-EC-17-A-R7-0525) for FIRDI, and the Chang Gung Medical Research Foundation and National Science Council for Dr. P. W. Hsieh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fwu-Ling Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CH., Lee, FL., Tien, CJ. et al. Rhodotorula taiwanensis sp. nov., a novel yeast species from a plant in Taiwan. Antonie van Leeuwenhoek 99, 297–302 (2011). https://doi.org/10.1007/s10482-010-9489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9489-2

Keywords

Navigation