Antonie van Leeuwenhoek

, Volume 99, Issue 2, pp 257–269 | Cite as

Biochemical and molecular characterization of Cronobacter spp. (formerly Enterobacter sakazakii) isolated from foods

  • Imrich Turcovský
  • Kristína Kuniková
  • Hana Drahovská
  • Eva Kaclíková
Original Paper

Abstract

The aim of this study was to identify and characterize Cronobacter spp. isolated from a range of foods. A total of 71 Cronobacter strains were isolated from 602 foods in our laboratory. The highest contamination was observed in foods of plant origin, e.g. spices, teas, chocolate, nuts, pastries and vegetables. On the basis of genus and species identification performed using genus-specific PCR, 16S rRNA sequencing and AFLP genotyping, most of the strains belonged to Cronobacter sakazakii. Biochemical profiling by the tests included in API 20E, complemented with relevant additional tests, classified the strains into 13 biogroups. AFLP genotyping facilitated discrimination of six main groups at the 70% similarity level and strain grouping correlated clearly with species identification. Our results indicate that molecular typing by AFLP may be applied as a useful tool not only for direct comparison of Cronobacter isolates, providing traceability, but also for the reliable species classification. Moreover, tracing of these bacteria in a wider variety of foods should be important to enhance the knowledge of their transmission.

Keywords

Cronobacter Characterization Food isolates Biotyping AFLP genotyping 

References

  1. Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G, Dowson C, Forsythe S (2009) Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol 9:223CrossRefPubMedGoogle Scholar
  2. Baumgartner A, Grand M, Liniger M, Iversen C (2009) Detection and frequency of Cronobacter spp. (Enterobacter sakazakii) in different categories of ready-to-eat foods other than infant formula. Int J Food Microbiol 136:189–192CrossRefPubMedGoogle Scholar
  3. Breeuwer P, Lardeau A, Peterz M, Joosten HM (2003) Desiccation and heat tolerance of Enterobacter sakazakii. J Appl Microbiol 95:967–973CrossRefPubMedGoogle Scholar
  4. Chap J, Jackson P, Siqueira R, Gaspar N, Quintas C, Park J, Osaili T, Shaker R, Jaradat Z, Hartantyo SHP, Abdullah Sani N, Estuningsih S, Forsythe SJ (2009) International survey of Cronobacter sakazakii and other Cronobacter spp. in follow up formulas and infant foods. Int J Food Microbiol 136:185–188CrossRefPubMedGoogle Scholar
  5. Drudy D, O’Rourke M, Murphy M et al (2006) Characterization of a collection of Enterobacter sakazakii isolates from environmental and food sources. Int J Food Microbiol 110:127–134CrossRefPubMedGoogle Scholar
  6. Druggan P, Iversen C (2009) Culture media for the isolation of Cronobacter spp. Int J Food Microbiol 136:169–178CrossRefPubMedGoogle Scholar
  7. Edelson-Mammel SG, Porteous MK, Buchanan RL (2005) Survival of Enterobacter sakazakii in a dehydrated powdered infant formula. J Food Prot 68:1900–1902PubMedGoogle Scholar
  8. El-Sharoud WM, O’Brien S, Negredo C, Iversen C, Fanning S, Healy B (2009) Characterization of Cronobacter recovered from dried milk and related products. BMC Microbiol 9:24–32CrossRefPubMedGoogle Scholar
  9. Fanjat N, Leclercq A, Joosten H, Robichon D (2007) Comparison of the phenotyping methods ID 32E and VITEK 2 compact GN with 16 rDNA gene sequencing for the identification of Enterobacter sakazakii. J Clin Microbiol 45:2048–2050CrossRefPubMedGoogle Scholar
  10. FAO/WHO report (2008) Enterobacter sakazakii (Cronobacter spp.) in powdered follow-up formulae: meeting report. Microbiological risk assessment series no. 15. Rome, Italy, 90 ppGoogle Scholar
  11. Farber JM (2004) Enterobacter sakazakii—new foods for thought? Lancet 363:5–6CrossRefPubMedGoogle Scholar
  12. Farmer JJ III, Asbury MA, Hickman FW, Brenner DJ, The Enterobacteriaceae Study Group (1980) Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Bacteriol 30:569–584CrossRefGoogle Scholar
  13. Friedemann M (2007) Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol 116:1–10CrossRefPubMedGoogle Scholar
  14. Gurtler JB, Kornacki JL, Beuchat LR (2005) Enterobacter sakazakii: a coliform of increased concern to infant health. Review. Int J Food Microbiol 104:1–34CrossRefPubMedGoogle Scholar
  15. Iversen C, Forsythe S (2004) Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol 21:771–777CrossRefGoogle Scholar
  16. Iversen C, Forsythe SJ (2007) Comparison of media for the isolation of Enterobacter sakazakii. Appl Environ Microbiol 73:48–52CrossRefPubMedGoogle Scholar
  17. Iversen C, Druggan P, Forsythe S (2004) A selective differential medium for Enterobacter sakazakii, a preliminary study. Int J Food Microbiol 96:133–139CrossRefPubMedGoogle Scholar
  18. Iversen C, Waddington M, Farmer JJ III, Forsythe S (2006) The biochemical differentiation of Enterobacter sakazakii genotypes. BMC Microbiol 6:94–100CrossRefPubMedGoogle Scholar
  19. Iversen C, Lehner A, Mullane N et al (2007) The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol 7:64–78CrossRefPubMedGoogle Scholar
  20. Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H (2008a) Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1 and three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 58:1442–1447CrossRefPubMedGoogle Scholar
  21. Iversen C, Druggan P, Schumacher S, Lehner A, Feer C, Gschwend K, Joosten H, Stephan R (2008b) Development of a novel screening method for the isolation of “Cronobacter” spp. (Enterobacter sakazakii). Appl Environ Microbiol 74:2550–2553CrossRefPubMedGoogle Scholar
  22. Jaradat ZW, Ababneh QO, Saadoun IM, Samara NA, Rashdan AM (2009) Isolation of Cronobacter spp. (formerly Enterobacter sakazakii) from infant food, herbs and environmental samples and the subsequent identification and confirmation of the isolates using biochemical, chromogenic assays, PCR and 16S rRNA sequencing. BMC Microbiol 9, art. no. 225Google Scholar
  23. Kandhai MC, Reij MW, Gorris LG, Guillaume-Gentil O, Schothorst M (2004) Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 363:39–40CrossRefPubMedGoogle Scholar
  24. Kucerova E, Clifton SW, Xia X-Q, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, Fulton R, Feng D, Wollam A, Shah N, Bhonagiri V, Nash WE, Hallsworth-Pepin K, Wilson RK, McClelland M, Forsythe SJ (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS ONE 5, art. no. e9556Google Scholar
  25. Kuhnert P, Korczak BM, Stephan R, Joosten H, Iversen C (2009) Phylogeny and prediction of genetic similarity of Cronobacter and related taxa by multilocus sequence analysis (MLSA). Int J Food Microbiol 136:152–158CrossRefPubMedGoogle Scholar
  26. Lai KK (2001) Enterobacter sakazakii infections among neonates, infants, children, and adults: case reports and a review of the literature. Medicine 80:113–122CrossRefPubMedGoogle Scholar
  27. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackenbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–148Google Scholar
  28. Lehner A, Tasara T, Stephan R (2004) 16S rRNA gene based analysis of Enterobacter sakazakii strains from different sources and development of a PCR assay for identification. BMC Microbiol 4:43–49CrossRefPubMedGoogle Scholar
  29. Mullane NR, Iversen C, Healy B, Walsh C, Whyte P, Wall PG, Quinn T, Fanning S (2007) Enterobacter sakazakii an emerging bacterial pathogen with implications for infant health. Minerva Pediatr 59:137–148PubMedGoogle Scholar
  30. Nazarowec-White M, Farber JM (1997) Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Lett Appl Microbiol 24:9–13CrossRefPubMedGoogle Scholar
  31. O’Brien S, Healy B, Negredo C, Fanning S, Iversen C (2009a) Evaluation of a new one-step enrichment in conjunction with a chromogenic medium for the detection of Cronobacter spp. (Enterobacter sakazakii) in powdered infant formula. J Food Prot 72:1472–1475PubMedGoogle Scholar
  32. O’Brien S, Healy B, Negredo C, Anderson W, Fanning S, Iversen C (2009b) Prevalence of Cronobacter species (Enterobacter sakazakii) in follow-on infant formulae and infant drinks. Lett Appl Microbiol 48:536–541CrossRefPubMedGoogle Scholar
  33. Osaili T, Forsythe S (2009) Desiccation resistance and persistence of Cronobacter species in infant formula. Int J Food Microbiol 136:214–220CrossRefPubMedGoogle Scholar
  34. Pangallo D, Drahovska H, Harichova J, Karelova E, Chovanova K, Aradska J, Ferianc P, Turna J, Timko J (2008) Evaluation of different PCR-based approaches for the identification and typing of environmental enterococci. Antonie van Leeuwenhoek 93:193–203CrossRefPubMedGoogle Scholar
  35. Ray P, Das A, Gautam V, Jain N, Wig JD, Sharma M (2007) Postoperative nosocomial Enterobacter sakazakii sepsis. ANZ J Surg 77:915–916CrossRefPubMedGoogle Scholar
  36. Schmid M, Iversen C, Gontia I, Stephan R, Hofmann A, Hartmann A, Jha B, Eberl L, Riedel K, Lehner A (2009) Evidence for a plant-associated natural habitat for Cronobacter spp. Res Microbiol 160:608–614CrossRefPubMedGoogle Scholar
  37. See KC, Than HA, Tang T (2007) Enterobacter sakazakii bacteraemia with multiple splenic abscesses in a 75-year old woman: a case report. Age Ageing 36:595–596CrossRefPubMedGoogle Scholar
  38. Seo KH, Brackett RE (2005) Rapid, specific detection of Enterobacter sakazakii in infant formula using a real-time PCR. J Food Prot 68:59–63PubMedGoogle Scholar
  39. Stoop B, Lehner A, Iversen C, Fanning S, Stephan R (2009) Development and evaluation of rpoB based PCR systems to differentiate the six proposed species within the genus Cronobacter. Int J Food Microbiol 136:165–168CrossRefPubMedGoogle Scholar
  40. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  41. Townsend S, Hurrell E, Forsythe S (2008) Virulence studies of Enterobacter sakazakii isolates associated with a neonatal intensive care unit outbreak. BMC Microbiol 8:64–72CrossRefPubMedGoogle Scholar
  42. Van Acker J, de Smet F, Muyldermans G, Bougatef A, Naessens A (2001) Outbreaks of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J Clin Microbiol 39:293–297CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Imrich Turcovský
    • 1
  • Kristína Kuniková
    • 2
  • Hana Drahovská
    • 2
  • Eva Kaclíková
    • 1
  1. 1.Department of Microbiology and Molecular BiologyFood Research InstituteBratislavaSlovakia
  2. 2.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations