Skip to main content
Log in

Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In this work we analysed different chromosomal and symbiotic markers in rhizobial strains nodulating Lupinus albus (white lupin) in several continents. Collectively the analysis of their rrs and atpD genes, and 16S-23S intergenic spacers (ITS), showed that they belong to at least four chromosomal lineages within the genus Bradyrhizobium. Most isolates from the Canary Islands (near to the African continent) grouped with some strains isolated on mainland Spain and were identified as Bradyrhizobium canariense. These strains are divided into two ITS subgroups coincident with those previously described from isolates nodulating Ornithopus. The remaining strains isolated on mainland Spain grouped with most isolates from Chile (American continent) forming a new lineage related to Bradyrhizobium japonicum. The strains BLUT2 and ISLU207 isolated from the Canary Islands and Chile, respectively, formed two new lineages phylogenetically close to different species of Bradyrhizobium depending on the marker analyzed. The analysis of the nodC gene showed that all strains nodulating L. albus belong to the biovar genistearum; nevertheless they form four different nodC lineages of which lineage C is at present exclusively formed by L. albus endosymbionts isolated from different continents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Álvarez-Martínez ER, Valverde A, Ramírez-Bahena MH, García-Fraile P, Tejedor C, Mateos PF, Santillana N, Zúñiga D, Peix A, Velázquez E (2009) The analysis of core and symbiotic genes of rhizobia nodulating Vicia from different continents reveals their common phylogenetic origin and suggests the distribution of Rhizobium leguminosarum strains together with Vicia seeds. Arch Microbiol 191:659–668

    Article  PubMed  CAS  Google Scholar 

  • Andam CP, Parker MA (2007) Novel alphaproteobacterial root nodule symbiont associated with Lupinus texensis. Appl Environ Microbiol 73:5687–5691

    Article  CAS  PubMed  Google Scholar 

  • Barrera LL, Trujillo ME, Goodfellow M, García FJ, Hernández-Lucas I, Dávila G, van Berkum P, Martínez-Romero E (1997) Biodiversity of bradyrhizobia nodulating Lupinus spp. Int J Syst Bacteriol 47:1086–1091

    Article  CAS  PubMed  Google Scholar 

  • Clapham WM (1997) Lupin development. Field Crops Res 52:283–284

    Article  Google Scholar 

  • Dijkstra DS, Linnemann AR, van Boekel TA (2003) Towards sustainable production of protein-rich foods: appraisal of eight crops for Western Europe. Part II: Analysis of the technological aspects of the production chain. Crit Rev Food Sci Nut 43:481–506

    Article  CAS  Google Scholar 

  • Erbas M, Certel M, Uslu MK (2005) Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chem 89:341–345

    Article  CAS  Google Scholar 

  • Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JWP (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048

    CAS  PubMed  Google Scholar 

  • Iglesias O, Rivas R, García-Fraile P, Abril A, Mateos PF, Martinez-Molina E, Velázquez E (2007) Genetic characterization of fast-growing rhizobia able to nodulate Prosopis alba in North Spain. FEMS Microbiol Lett 277:210–216

    Article  CAS  PubMed  Google Scholar 

  • Jarabo-Lorenzo A, Pérez-Galdona R, Donate-Correa J, Rivas R, Velázquez E, Hernández M, Temprano F, Martínez-Molina E, Ruiz-Argüeso T, León-Barrios M (2003) Genetic diversity of bradyrhizobial populations from diverse geographic origins that nodulate Lupinus spp. and Ornithopus spp. Syst Appl Microbiol 26:611–626

    Article  CAS  PubMed  Google Scholar 

  • Jensen CR, Joernsgaard B, Andersen MN, Christiansen JL, Mogensen VO, Friis P, Petersen CT (2004) The effect of lupins as compared with peas and oats on the yield of the subsequent winter barley crop. Eur J Agron 20:405–418

    Article  Google Scholar 

  • Kalita M, Stepkowski T, Lotocka B, Malek W (2006) Phylogeny of nodulation genes and symbiotic properties of Genista tinctoria bradyrhizobia. Arch Microbiol 186:87–97

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kuykendall LD (2005) Order VI. Rhizobiales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), vol 2, 2nd edn. Springer, New York, pp 324–340

    Google Scholar 

  • Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993

    CAS  PubMed  Google Scholar 

  • Laranjo M, Alexandre A, Rivas R, Velázquez E, Young JP, Oliveira S (2009) Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400

    Google Scholar 

  • Lindström K, Young JPW (2009) International committee on systematics of prokaryotes; subcommittee on the taxonomy of Agrobacterium and Rhizobium: minutes of the meetings, 31 August 2008, Gent, Belgium. Int J Syst Evol Microbiol 59:921–922

    Article  PubMed  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Bahena MH, Peix A, Rivas R, Rodríguez-Navarro DN, Camacho M, Mateos PF, Martínez-Molina E, Willems A, Velázquez E (2009) Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59:1929–1934

    Article  PubMed  Google Scholar 

  • Rivas R, Willems A, Palomo JL, García-Benavides P, Mateos PF, Martínez-Molina E, Gillis M, Velázquez E (2004) Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int J Syst Evol Microbiol 54:1271–1275

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Peix A, Mateos PF, Trujillo ME, Martínez-Molina E, Velázquez E (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulate chickpea in different Spanish soils. Plant Soil 287:23–33

    Article  CAS  Google Scholar 

  • Rivas R, García-Fraile P, Mateos PF, Martínez-Molina E, Velázquez E (2007a) Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Lett Appl Microbiol 44:181–187

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Laranjo M, Velázquez E, Mateos PF, Oliveira S, Martínez-Molina E (2007b) Strains of Mesorhizobium amorphae and M. tianshanense carrying symbiotic genes of common chickpea endosymbiotic species constitute a novel biovar (ciceri) able to nodulate Cicer arietinum. Lett Appl Microbiol 44:412–418

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Martens M, de Lajudie P, Willems A (2009) Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32:101–110

    Article  CAS  PubMed  Google Scholar 

  • Robinson KO, Beyene DA, van Berkum P, Knight-Mason R, Bhardwaj HL (2000) Variability in plant-microbe interaction between Lupinus lines and Bradyrhizobium strains. Plant Sci 159:257–264

    Article  CAS  PubMed  Google Scholar 

  • Roche P, Maillet F, Plazanet C, Debellé F, Ferro M, Truchet G, Prome JC, Dénarié J (1996) The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci USA 93:15305–15310

    Article  CAS  PubMed  Google Scholar 

  • Rosolem CA, Foloni JSS, Tiritan CS (2002) Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil Tillage Res 65:109–115

    Article  Google Scholar 

  • Safronova V, Chizhevskaya E, Bullitta S, Andronov E, Belimov A, Charles TC, Lindstrom K (2007) Presence of a novel 16S-23S rRNA gene intergenic spacer insert in Bradyrhizobium canariense strains. FEMS Microbiol Lett 269:207–212

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) A neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Santillana N, Ramírez-Bahena MH, García-Fraile P, Velázquez E, Zúñiga D (2008) Phylogenetic diversity based on rrs, atpD, recA genes and 16S-23S intergenic sequence analyses of rhizobial strains isolated from Vicia faba and Pisum sativum in Peru. Arch Microbiol 189:239–247

    Article  CAS  PubMed  Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for rhizobia methods in legume-rhizobium technology. Springer, New York

    Google Scholar 

  • Stepkowski T, Moulin L, Krzyzanska A, McInnes A, Law IJ, Howieson J (2005) European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl Environ Microbiol 71:7041–7052

    Article  CAS  PubMed  Google Scholar 

  • Stepkowski T, Hughes CE, Law IJ, Markiewicz L, Gurda D, Chlebicka A, Moulin L (2007) Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 73:3254–3264

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1987) The clustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882

    Article  Google Scholar 

  • Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF, Martínez-Molina E, Velázquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E (2006) Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637

    Article  CAS  PubMed  Google Scholar 

  • Vincent JM (1970) The cultivation, isolation and maintenance of rhizobia. In: Vincent JM (ed) A manual for the practical study of root-nodule. Blackwell Scientific Publications, Oxford, pp 1–13

    Google Scholar 

  • Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005a) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575

    Article  CAS  PubMed  Google Scholar 

  • Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005b) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54

    Article  CAS  PubMed  Google Scholar 

  • Willems A, Munive A, de Lajudie P, Gillis M (2003) In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA–DNA hybridizations. Syst Appl Microbiol 26:203–210

    Article  CAS  PubMed  Google Scholar 

  • Zurdo-Piñeiro JL, García-Fraile P, Rivas R, Peix A, León-Barrios M, Willems A, Mateos PF, Martínez-Molina E, Velázquez E, van Berkum P (2009) Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with Sinorhizobium meliloti isolates from mainland Spain. Appl Environ Microbiol 75:2354–2359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Regional Government of Castilla y León (Grants GR49 and CSI04A06) and partially by Grant BOS2003-05858 from the Ministerio de Ciencia y Tecnología of the Spanish Government. A. Valverde was supported by a postdoctoral JAE-Doc (CSIC) contract and R. Rivas by a postdoctoral contract of “Ramón y Cajal” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Encarna Velázquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez, E., Valverde, A., Rivas, R. et al. Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium . Antonie van Leeuwenhoek 97, 363–376 (2010). https://doi.org/10.1007/s10482-010-9415-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9415-7

Keywords

Navigation